ibnummuhammad
commited on
Commit
·
78b0507
1
Parent(s):
a39f8ea
Fix code
Browse files- coal-price-forecast.ipynb +1377 -155
coal-price-forecast.ipynb
CHANGED
@@ -37,7 +37,7 @@
|
|
37 |
" csv_file = csv_file.split(\".\")[0]\n",
|
38 |
" df[csv_file] = pd.read_csv(f\"../coal-price-data/fred/{csv_file}.csv\")\n",
|
39 |
" df[csv_file][\"datetime\"] = pd.to_datetime(df[csv_file][csv_date], format=\"%Y-%m-%d\")\n",
|
40 |
-
"
|
41 |
" (df[csv_file][\"datetime\"] >= csv_date_start) & (df[csv_file][\"datetime\"] < csv_date_end)\n",
|
42 |
" ]"
|
43 |
]
|
@@ -75,34 +75,34 @@
|
|
75 |
" </thead>\n",
|
76 |
" <tbody>\n",
|
77 |
" <tr>\n",
|
78 |
-
" <th>
|
79 |
-
" <td>
|
80 |
-
" <td>
|
81 |
-
" <td>
|
82 |
" </tr>\n",
|
83 |
" <tr>\n",
|
84 |
-
" <th>
|
85 |
-
" <td>
|
86 |
-
" <td>
|
87 |
-
" <td>
|
88 |
" </tr>\n",
|
89 |
" <tr>\n",
|
90 |
-
" <th>
|
91 |
-
" <td>
|
92 |
-
" <td>
|
93 |
-
" <td>
|
94 |
" </tr>\n",
|
95 |
" <tr>\n",
|
96 |
-
" <th>
|
97 |
-
" <td>
|
98 |
-
" <td>
|
99 |
-
" <td>
|
100 |
" </tr>\n",
|
101 |
" <tr>\n",
|
102 |
-
" <th>
|
103 |
-
" <td>
|
104 |
-
" <td>
|
105 |
-
" <td>
|
106 |
" </tr>\n",
|
107 |
" <tr>\n",
|
108 |
" <th>...</th>\n",
|
@@ -111,6 +111,12 @@
|
|
111 |
" <td>...</td>\n",
|
112 |
" </tr>\n",
|
113 |
" <tr>\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
114 |
" <th>775</th>\n",
|
115 |
" <td>2023-08-01</td>\n",
|
116 |
" <td>20825.6</td>\n",
|
@@ -134,32 +140,26 @@
|
|
134 |
" <td>20767.5</td>\n",
|
135 |
" <td>2023-11-01</td>\n",
|
136 |
" </tr>\n",
|
137 |
-
" <tr>\n",
|
138 |
-
" <th>779</th>\n",
|
139 |
-
" <td>2023-12-01</td>\n",
|
140 |
-
" <td>20865.2</td>\n",
|
141 |
-
" <td>2023-12-01</td>\n",
|
142 |
-
" </tr>\n",
|
143 |
" </tbody>\n",
|
144 |
"</table>\n",
|
145 |
-
"<p>
|
146 |
"</div>"
|
147 |
],
|
148 |
"text/plain": [
|
149 |
" DATE M2SL datetime\n",
|
150 |
-
"
|
151 |
-
"
|
152 |
-
"
|
153 |
-
"
|
154 |
-
"
|
155 |
".. ... ... ...\n",
|
|
|
156 |
"775 2023-08-01 20825.6 2023-08-01\n",
|
157 |
"776 2023-09-01 20755.4 2023-09-01\n",
|
158 |
"777 2023-10-01 20725.7 2023-10-01\n",
|
159 |
"778 2023-11-01 20767.5 2023-11-01\n",
|
160 |
-
"779 2023-12-01 20865.2 2023-12-01\n",
|
161 |
"\n",
|
162 |
-
"[
|
163 |
]
|
164 |
},
|
165 |
"execution_count": 3,
|
@@ -173,7 +173,7 @@
|
|
173 |
},
|
174 |
{
|
175 |
"cell_type": "code",
|
176 |
-
"execution_count":
|
177 |
"metadata": {},
|
178 |
"outputs": [
|
179 |
{
|
@@ -194,13 +194,13 @@
|
|
194 |
"ICI_1 277.62\n",
|
195 |
"datetime 2023-12-01 00:00:00\n",
|
196 |
"dtype: object\n",
|
197 |
-
"DATE
|
198 |
-
"M2SL
|
199 |
-
"datetime
|
200 |
"dtype: object\n",
|
201 |
-
"DATE 2023-
|
202 |
"M2SL 21703.5\n",
|
203 |
-
"datetime 2023-
|
204 |
"dtype: object\n"
|
205 |
]
|
206 |
}
|
@@ -214,7 +214,7 @@
|
|
214 |
},
|
215 |
{
|
216 |
"cell_type": "code",
|
217 |
-
"execution_count":
|
218 |
"metadata": {},
|
219 |
"outputs": [
|
220 |
{
|
@@ -1455,120 +1455,1342 @@
|
|
1455 |
},
|
1456 |
{
|
1457 |
"cell_type": "code",
|
1458 |
-
"execution_count":
|
1459 |
-
"metadata": {},
|
1460 |
-
"outputs": [],
|
1461 |
-
"source": [
|
1462 |
-
"y = \"M2SL\"\n",
|
1463 |
-
"fig = px.line(df_m2_filtered, x=\"datetime\", y=y, labels={\"Month\": \"Date\"})\n",
|
1464 |
-
"fig.update_layout(\n",
|
1465 |
-
" template=\"simple_white\",\n",
|
1466 |
-
" font=dict(size=18),\n",
|
1467 |
-
" title_text=y,\n",
|
1468 |
-
" width=650,\n",
|
1469 |
-
" title_x=0.5,\n",
|
1470 |
-
" height=400,\n",
|
1471 |
-
")\n",
|
1472 |
-
"fig.show()"
|
1473 |
-
]
|
1474 |
-
},
|
1475 |
-
{
|
1476 |
-
"cell_type": "code",
|
1477 |
-
"execution_count": null,
|
1478 |
-
"metadata": {},
|
1479 |
-
"outputs": [],
|
1480 |
-
"source": []
|
1481 |
-
},
|
1482 |
-
{
|
1483 |
-
"cell_type": "code",
|
1484 |
-
"execution_count": null,
|
1485 |
-
"metadata": {},
|
1486 |
-
"outputs": [],
|
1487 |
-
"source": [
|
1488 |
-
"df_coal"
|
1489 |
-
]
|
1490 |
-
},
|
1491 |
-
{
|
1492 |
-
"cell_type": "code",
|
1493 |
-
"execution_count": null,
|
1494 |
-
"metadata": {},
|
1495 |
-
"outputs": [],
|
1496 |
-
"source": [
|
1497 |
-
"df_m2_filtered"
|
1498 |
-
]
|
1499 |
-
},
|
1500 |
-
{
|
1501 |
-
"cell_type": "code",
|
1502 |
-
"execution_count": null,
|
1503 |
-
"metadata": {},
|
1504 |
-
"outputs": [],
|
1505 |
-
"source": [
|
1506 |
-
"print(len(df_coal.newcastle))\n",
|
1507 |
-
"print(len(df_m2_filtered[\"M2SL\"]))"
|
1508 |
-
]
|
1509 |
-
},
|
1510 |
-
{
|
1511 |
-
"cell_type": "code",
|
1512 |
-
"execution_count": null,
|
1513 |
-
"metadata": {},
|
1514 |
-
"outputs": [],
|
1515 |
-
"source": []
|
1516 |
-
},
|
1517 |
-
{
|
1518 |
-
"cell_type": "code",
|
1519 |
-
"execution_count": null,
|
1520 |
-
"metadata": {},
|
1521 |
-
"outputs": [],
|
1522 |
-
"source": [
|
1523 |
-
"x = df_coal.newcastle\n",
|
1524 |
-
"y = df_coal.ICI_1\n",
|
1525 |
-
"\n",
|
1526 |
-
"slope, intercept, r, p, std_err = stats.linregress(x, y)"
|
1527 |
-
]
|
1528 |
-
},
|
1529 |
-
{
|
1530 |
-
"cell_type": "code",
|
1531 |
-
"execution_count": null,
|
1532 |
-
"metadata": {},
|
1533 |
-
"outputs": [],
|
1534 |
-
"source": [
|
1535 |
-
"print(f\"slope: {slope}\")\n",
|
1536 |
-
"print(f\"intercept: {intercept}\")\n",
|
1537 |
-
"print(f\"r: {r}\")\n",
|
1538 |
-
"print(f\"p: {p}\")\n",
|
1539 |
-
"print(f\"std_err: {std_err}\")"
|
1540 |
-
]
|
1541 |
-
},
|
1542 |
-
{
|
1543 |
-
"cell_type": "code",
|
1544 |
-
"execution_count": null,
|
1545 |
-
"metadata": {},
|
1546 |
-
"outputs": [],
|
1547 |
-
"source": [
|
1548 |
-
"x = df_coal.newcastle\n",
|
1549 |
-
"y = df_m2_filtered[\"M2SL\"]\n",
|
1550 |
-
"\n",
|
1551 |
-
"slope, intercept, r, p, std_err = stats.linregress(x, y)"
|
1552 |
-
]
|
1553 |
-
},
|
1554 |
-
{
|
1555 |
-
"cell_type": "code",
|
1556 |
-
"execution_count": null,
|
1557 |
-
"metadata": {},
|
1558 |
-
"outputs": [],
|
1559 |
-
"source": [
|
1560 |
-
"print(f\"slope: {slope}\")\n",
|
1561 |
-
"print(f\"intercept: {intercept}\")\n",
|
1562 |
-
"print(f\"r: {r}\")\n",
|
1563 |
-
"print(f\"p: {p}\")\n",
|
1564 |
-
"print(f\"std_err: {std_err}\")"
|
1565 |
-
]
|
1566 |
-
},
|
1567 |
-
{
|
1568 |
-
"cell_type": "code",
|
1569 |
-
"execution_count": null,
|
1570 |
"metadata": {},
|
1571 |
-
"outputs": [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1572 |
"source": [
|
1573 |
"def myfunc(x):\n",
|
1574 |
" return slope * x + intercept\n",
|
|
|
37 |
" csv_file = csv_file.split(\".\")[0]\n",
|
38 |
" df[csv_file] = pd.read_csv(f\"../coal-price-data/fred/{csv_file}.csv\")\n",
|
39 |
" df[csv_file][\"datetime\"] = pd.to_datetime(df[csv_file][csv_date], format=\"%Y-%m-%d\")\n",
|
40 |
+
" df[csv_file] = df[csv_file].loc[\n",
|
41 |
" (df[csv_file][\"datetime\"] >= csv_date_start) & (df[csv_file][\"datetime\"] < csv_date_end)\n",
|
42 |
" ]"
|
43 |
]
|
|
|
75 |
" </thead>\n",
|
76 |
" <tbody>\n",
|
77 |
" <tr>\n",
|
78 |
+
" <th>634</th>\n",
|
79 |
+
" <td>2011-11-01</td>\n",
|
80 |
+
" <td>9612.6</td>\n",
|
81 |
+
" <td>2011-11-01</td>\n",
|
82 |
" </tr>\n",
|
83 |
" <tr>\n",
|
84 |
+
" <th>635</th>\n",
|
85 |
+
" <td>2011-12-01</td>\n",
|
86 |
+
" <td>9660.1</td>\n",
|
87 |
+
" <td>2011-12-01</td>\n",
|
88 |
" </tr>\n",
|
89 |
" <tr>\n",
|
90 |
+
" <th>636</th>\n",
|
91 |
+
" <td>2012-01-01</td>\n",
|
92 |
+
" <td>9733.3</td>\n",
|
93 |
+
" <td>2012-01-01</td>\n",
|
94 |
" </tr>\n",
|
95 |
" <tr>\n",
|
96 |
+
" <th>637</th>\n",
|
97 |
+
" <td>2012-02-01</td>\n",
|
98 |
+
" <td>9785.7</td>\n",
|
99 |
+
" <td>2012-02-01</td>\n",
|
100 |
" </tr>\n",
|
101 |
" <tr>\n",
|
102 |
+
" <th>638</th>\n",
|
103 |
+
" <td>2012-03-01</td>\n",
|
104 |
+
" <td>9830.6</td>\n",
|
105 |
+
" <td>2012-03-01</td>\n",
|
106 |
" </tr>\n",
|
107 |
" <tr>\n",
|
108 |
" <th>...</th>\n",
|
|
|
111 |
" <td>...</td>\n",
|
112 |
" </tr>\n",
|
113 |
" <tr>\n",
|
114 |
+
" <th>774</th>\n",
|
115 |
+
" <td>2023-07-01</td>\n",
|
116 |
+
" <td>20863.8</td>\n",
|
117 |
+
" <td>2023-07-01</td>\n",
|
118 |
+
" </tr>\n",
|
119 |
+
" <tr>\n",
|
120 |
" <th>775</th>\n",
|
121 |
" <td>2023-08-01</td>\n",
|
122 |
" <td>20825.6</td>\n",
|
|
|
140 |
" <td>20767.5</td>\n",
|
141 |
" <td>2023-11-01</td>\n",
|
142 |
" </tr>\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
143 |
" </tbody>\n",
|
144 |
"</table>\n",
|
145 |
+
"<p>145 rows × 3 columns</p>\n",
|
146 |
"</div>"
|
147 |
],
|
148 |
"text/plain": [
|
149 |
" DATE M2SL datetime\n",
|
150 |
+
"634 2011-11-01 9612.6 2011-11-01\n",
|
151 |
+
"635 2011-12-01 9660.1 2011-12-01\n",
|
152 |
+
"636 2012-01-01 9733.3 2012-01-01\n",
|
153 |
+
"637 2012-02-01 9785.7 2012-02-01\n",
|
154 |
+
"638 2012-03-01 9830.6 2012-03-01\n",
|
155 |
".. ... ... ...\n",
|
156 |
+
"774 2023-07-01 20863.8 2023-07-01\n",
|
157 |
"775 2023-08-01 20825.6 2023-08-01\n",
|
158 |
"776 2023-09-01 20755.4 2023-09-01\n",
|
159 |
"777 2023-10-01 20725.7 2023-10-01\n",
|
160 |
"778 2023-11-01 20767.5 2023-11-01\n",
|
|
|
161 |
"\n",
|
162 |
+
"[145 rows x 3 columns]"
|
163 |
]
|
164 |
},
|
165 |
"execution_count": 3,
|
|
|
173 |
},
|
174 |
{
|
175 |
"cell_type": "code",
|
176 |
+
"execution_count": 4,
|
177 |
"metadata": {},
|
178 |
"outputs": [
|
179 |
{
|
|
|
194 |
"ICI_1 277.62\n",
|
195 |
"datetime 2023-12-01 00:00:00\n",
|
196 |
"dtype: object\n",
|
197 |
+
"DATE 2011-11-01\n",
|
198 |
+
"M2SL 9612.6\n",
|
199 |
+
"datetime 2011-11-01 00:00:00\n",
|
200 |
"dtype: object\n",
|
201 |
+
"DATE 2023-11-01\n",
|
202 |
"M2SL 21703.5\n",
|
203 |
+
"datetime 2023-11-01 00:00:00\n",
|
204 |
"dtype: object\n"
|
205 |
]
|
206 |
}
|
|
|
214 |
},
|
215 |
{
|
216 |
"cell_type": "code",
|
217 |
+
"execution_count": 5,
|
218 |
"metadata": {},
|
219 |
"outputs": [
|
220 |
{
|
|
|
1455 |
},
|
1456 |
{
|
1457 |
"cell_type": "code",
|
1458 |
+
"execution_count": 6,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1459 |
"metadata": {},
|
1460 |
+
"outputs": [
|
1461 |
+
{
|
1462 |
+
"data": {
|
1463 |
+
"application/vnd.plotly.v1+json": {
|
1464 |
+
"config": {
|
1465 |
+
"plotlyServerURL": "https://plot.ly"
|
1466 |
+
},
|
1467 |
+
"data": [
|
1468 |
+
{
|
1469 |
+
"hovertemplate": "datetime=%{x}<br>M2SL=%{y}<extra></extra>",
|
1470 |
+
"legendgroup": "",
|
1471 |
+
"line": {
|
1472 |
+
"color": "#636efa",
|
1473 |
+
"dash": "solid"
|
1474 |
+
},
|
1475 |
+
"marker": {
|
1476 |
+
"symbol": "circle"
|
1477 |
+
},
|
1478 |
+
"mode": "lines",
|
1479 |
+
"name": "",
|
1480 |
+
"orientation": "v",
|
1481 |
+
"showlegend": false,
|
1482 |
+
"type": "scatter",
|
1483 |
+
"x": [
|
1484 |
+
"2011-11-01T00:00:00",
|
1485 |
+
"2011-12-01T00:00:00",
|
1486 |
+
"2012-01-01T00:00:00",
|
1487 |
+
"2012-02-01T00:00:00",
|
1488 |
+
"2012-03-01T00:00:00",
|
1489 |
+
"2012-04-01T00:00:00",
|
1490 |
+
"2012-05-01T00:00:00",
|
1491 |
+
"2012-06-01T00:00:00",
|
1492 |
+
"2012-07-01T00:00:00",
|
1493 |
+
"2012-08-01T00:00:00",
|
1494 |
+
"2012-09-01T00:00:00",
|
1495 |
+
"2012-10-01T00:00:00",
|
1496 |
+
"2012-11-01T00:00:00",
|
1497 |
+
"2012-12-01T00:00:00",
|
1498 |
+
"2013-01-01T00:00:00",
|
1499 |
+
"2013-02-01T00:00:00",
|
1500 |
+
"2013-03-01T00:00:00",
|
1501 |
+
"2013-04-01T00:00:00",
|
1502 |
+
"2013-05-01T00:00:00",
|
1503 |
+
"2013-06-01T00:00:00",
|
1504 |
+
"2013-07-01T00:00:00",
|
1505 |
+
"2013-08-01T00:00:00",
|
1506 |
+
"2013-09-01T00:00:00",
|
1507 |
+
"2013-10-01T00:00:00",
|
1508 |
+
"2013-11-01T00:00:00",
|
1509 |
+
"2013-12-01T00:00:00",
|
1510 |
+
"2014-01-01T00:00:00",
|
1511 |
+
"2014-02-01T00:00:00",
|
1512 |
+
"2014-03-01T00:00:00",
|
1513 |
+
"2014-04-01T00:00:00",
|
1514 |
+
"2014-05-01T00:00:00",
|
1515 |
+
"2014-06-01T00:00:00",
|
1516 |
+
"2014-07-01T00:00:00",
|
1517 |
+
"2014-08-01T00:00:00",
|
1518 |
+
"2014-09-01T00:00:00",
|
1519 |
+
"2014-10-01T00:00:00",
|
1520 |
+
"2014-11-01T00:00:00",
|
1521 |
+
"2014-12-01T00:00:00",
|
1522 |
+
"2015-01-01T00:00:00",
|
1523 |
+
"2015-02-01T00:00:00",
|
1524 |
+
"2015-03-01T00:00:00",
|
1525 |
+
"2015-04-01T00:00:00",
|
1526 |
+
"2015-05-01T00:00:00",
|
1527 |
+
"2015-06-01T00:00:00",
|
1528 |
+
"2015-07-01T00:00:00",
|
1529 |
+
"2015-08-01T00:00:00",
|
1530 |
+
"2015-09-01T00:00:00",
|
1531 |
+
"2015-10-01T00:00:00",
|
1532 |
+
"2015-11-01T00:00:00",
|
1533 |
+
"2015-12-01T00:00:00",
|
1534 |
+
"2016-01-01T00:00:00",
|
1535 |
+
"2016-02-01T00:00:00",
|
1536 |
+
"2016-03-01T00:00:00",
|
1537 |
+
"2016-04-01T00:00:00",
|
1538 |
+
"2016-05-01T00:00:00",
|
1539 |
+
"2016-06-01T00:00:00",
|
1540 |
+
"2016-07-01T00:00:00",
|
1541 |
+
"2016-08-01T00:00:00",
|
1542 |
+
"2016-09-01T00:00:00",
|
1543 |
+
"2016-10-01T00:00:00",
|
1544 |
+
"2016-11-01T00:00:00",
|
1545 |
+
"2016-12-01T00:00:00",
|
1546 |
+
"2017-01-01T00:00:00",
|
1547 |
+
"2017-02-01T00:00:00",
|
1548 |
+
"2017-03-01T00:00:00",
|
1549 |
+
"2017-04-01T00:00:00",
|
1550 |
+
"2017-05-01T00:00:00",
|
1551 |
+
"2017-06-01T00:00:00",
|
1552 |
+
"2017-07-01T00:00:00",
|
1553 |
+
"2017-08-01T00:00:00",
|
1554 |
+
"2017-09-01T00:00:00",
|
1555 |
+
"2017-10-01T00:00:00",
|
1556 |
+
"2017-11-01T00:00:00",
|
1557 |
+
"2017-12-01T00:00:00",
|
1558 |
+
"2018-01-01T00:00:00",
|
1559 |
+
"2018-02-01T00:00:00",
|
1560 |
+
"2018-03-01T00:00:00",
|
1561 |
+
"2018-04-01T00:00:00",
|
1562 |
+
"2018-05-01T00:00:00",
|
1563 |
+
"2018-06-01T00:00:00",
|
1564 |
+
"2018-07-01T00:00:00",
|
1565 |
+
"2018-08-01T00:00:00",
|
1566 |
+
"2018-09-01T00:00:00",
|
1567 |
+
"2018-10-01T00:00:00",
|
1568 |
+
"2018-11-01T00:00:00",
|
1569 |
+
"2018-12-01T00:00:00",
|
1570 |
+
"2019-01-01T00:00:00",
|
1571 |
+
"2019-02-01T00:00:00",
|
1572 |
+
"2019-03-01T00:00:00",
|
1573 |
+
"2019-04-01T00:00:00",
|
1574 |
+
"2019-05-01T00:00:00",
|
1575 |
+
"2019-06-01T00:00:00",
|
1576 |
+
"2019-07-01T00:00:00",
|
1577 |
+
"2019-08-01T00:00:00",
|
1578 |
+
"2019-09-01T00:00:00",
|
1579 |
+
"2019-10-01T00:00:00",
|
1580 |
+
"2019-11-01T00:00:00",
|
1581 |
+
"2019-12-01T00:00:00",
|
1582 |
+
"2020-01-01T00:00:00",
|
1583 |
+
"2020-02-01T00:00:00",
|
1584 |
+
"2020-03-01T00:00:00",
|
1585 |
+
"2020-04-01T00:00:00",
|
1586 |
+
"2020-05-01T00:00:00",
|
1587 |
+
"2020-06-01T00:00:00",
|
1588 |
+
"2020-07-01T00:00:00",
|
1589 |
+
"2020-08-01T00:00:00",
|
1590 |
+
"2020-09-01T00:00:00",
|
1591 |
+
"2020-10-01T00:00:00",
|
1592 |
+
"2020-11-01T00:00:00",
|
1593 |
+
"2020-12-01T00:00:00",
|
1594 |
+
"2021-01-01T00:00:00",
|
1595 |
+
"2021-02-01T00:00:00",
|
1596 |
+
"2021-03-01T00:00:00",
|
1597 |
+
"2021-04-01T00:00:00",
|
1598 |
+
"2021-05-01T00:00:00",
|
1599 |
+
"2021-06-01T00:00:00",
|
1600 |
+
"2021-07-01T00:00:00",
|
1601 |
+
"2021-08-01T00:00:00",
|
1602 |
+
"2021-09-01T00:00:00",
|
1603 |
+
"2021-10-01T00:00:00",
|
1604 |
+
"2021-11-01T00:00:00",
|
1605 |
+
"2021-12-01T00:00:00",
|
1606 |
+
"2022-01-01T00:00:00",
|
1607 |
+
"2022-02-01T00:00:00",
|
1608 |
+
"2022-03-01T00:00:00",
|
1609 |
+
"2022-04-01T00:00:00",
|
1610 |
+
"2022-05-01T00:00:00",
|
1611 |
+
"2022-06-01T00:00:00",
|
1612 |
+
"2022-07-01T00:00:00",
|
1613 |
+
"2022-08-01T00:00:00",
|
1614 |
+
"2022-09-01T00:00:00",
|
1615 |
+
"2022-10-01T00:00:00",
|
1616 |
+
"2022-11-01T00:00:00",
|
1617 |
+
"2022-12-01T00:00:00",
|
1618 |
+
"2023-01-01T00:00:00",
|
1619 |
+
"2023-02-01T00:00:00",
|
1620 |
+
"2023-03-01T00:00:00",
|
1621 |
+
"2023-04-01T00:00:00",
|
1622 |
+
"2023-05-01T00:00:00",
|
1623 |
+
"2023-06-01T00:00:00",
|
1624 |
+
"2023-07-01T00:00:00",
|
1625 |
+
"2023-08-01T00:00:00",
|
1626 |
+
"2023-09-01T00:00:00",
|
1627 |
+
"2023-10-01T00:00:00",
|
1628 |
+
"2023-11-01T00:00:00"
|
1629 |
+
],
|
1630 |
+
"xaxis": "x",
|
1631 |
+
"y": [
|
1632 |
+
9612.6,
|
1633 |
+
9660.1,
|
1634 |
+
9733.3,
|
1635 |
+
9785.7,
|
1636 |
+
9830.6,
|
1637 |
+
9884.6,
|
1638 |
+
9928.4,
|
1639 |
+
9999.3,
|
1640 |
+
10051.8,
|
1641 |
+
10121.3,
|
1642 |
+
10200.8,
|
1643 |
+
10267.3,
|
1644 |
+
10337.6,
|
1645 |
+
10459.7,
|
1646 |
+
10482.9,
|
1647 |
+
10501.3,
|
1648 |
+
10558.3,
|
1649 |
+
10586.3,
|
1650 |
+
10621,
|
1651 |
+
10678.7,
|
1652 |
+
10718.4,
|
1653 |
+
10776.6,
|
1654 |
+
10837.2,
|
1655 |
+
10961.6,
|
1656 |
+
10969.7,
|
1657 |
+
11035,
|
1658 |
+
11080.8,
|
1659 |
+
11178.8,
|
1660 |
+
11208.1,
|
1661 |
+
11257.7,
|
1662 |
+
11321,
|
1663 |
+
11374.9,
|
1664 |
+
11429.9,
|
1665 |
+
11458.9,
|
1666 |
+
11499.8,
|
1667 |
+
11566,
|
1668 |
+
11604.8,
|
1669 |
+
11684.9,
|
1670 |
+
11745.6,
|
1671 |
+
11879,
|
1672 |
+
11886.8,
|
1673 |
+
11928.9,
|
1674 |
+
11957.9,
|
1675 |
+
12001.7,
|
1676 |
+
12051.3,
|
1677 |
+
12101.9,
|
1678 |
+
12160.8,
|
1679 |
+
12195.9,
|
1680 |
+
12284.6,
|
1681 |
+
12346.8,
|
1682 |
+
12469.9,
|
1683 |
+
12556.7,
|
1684 |
+
12616.7,
|
1685 |
+
12700.4,
|
1686 |
+
12766.2,
|
1687 |
+
12829.4,
|
1688 |
+
12887.7,
|
1689 |
+
12972.8,
|
1690 |
+
13033.6,
|
1691 |
+
13100.5,
|
1692 |
+
13173.4,
|
1693 |
+
13213.4,
|
1694 |
+
13283.4,
|
1695 |
+
13358.8,
|
1696 |
+
13426.9,
|
1697 |
+
13484.9,
|
1698 |
+
13538.1,
|
1699 |
+
13559.2,
|
1700 |
+
13618.7,
|
1701 |
+
13673.7,
|
1702 |
+
13717.9,
|
1703 |
+
13770.1,
|
1704 |
+
13799.9,
|
1705 |
+
13857.9,
|
1706 |
+
13869.7,
|
1707 |
+
13912.3,
|
1708 |
+
13970.2,
|
1709 |
+
13988.8,
|
1710 |
+
14047.2,
|
1711 |
+
14103.6,
|
1712 |
+
14139.2,
|
1713 |
+
14181.3,
|
1714 |
+
14212.9,
|
1715 |
+
14222.5,
|
1716 |
+
14236.8,
|
1717 |
+
14362.7,
|
1718 |
+
14430,
|
1719 |
+
14469.9,
|
1720 |
+
14509.9,
|
1721 |
+
14541,
|
1722 |
+
14643.2,
|
1723 |
+
14757.7,
|
1724 |
+
14840.6,
|
1725 |
+
14914.6,
|
1726 |
+
15008.1,
|
1727 |
+
15140.8,
|
1728 |
+
15242.2,
|
1729 |
+
15320.7,
|
1730 |
+
15396,
|
1731 |
+
15450.3,
|
1732 |
+
15978.7,
|
1733 |
+
16997.6,
|
1734 |
+
17851.1,
|
1735 |
+
18131.7,
|
1736 |
+
18286.3,
|
1737 |
+
18346,
|
1738 |
+
18577.3,
|
1739 |
+
18729.1,
|
1740 |
+
18949.3,
|
1741 |
+
19114.6,
|
1742 |
+
19357.5,
|
1743 |
+
19600.6,
|
1744 |
+
19840.8,
|
1745 |
+
20116.8,
|
1746 |
+
20431.1,
|
1747 |
+
20506.7,
|
1748 |
+
20663.1,
|
1749 |
+
20847.8,
|
1750 |
+
20964.3,
|
1751 |
+
21115.6,
|
1752 |
+
21315.7,
|
1753 |
+
21549.3,
|
1754 |
+
21562.3,
|
1755 |
+
21570.7,
|
1756 |
+
21697.8,
|
1757 |
+
21677.2,
|
1758 |
+
21665.5,
|
1759 |
+
21666.1,
|
1760 |
+
21703.5,
|
1761 |
+
21659.6,
|
1762 |
+
21525.1,
|
1763 |
+
21433.2,
|
1764 |
+
21399.3,
|
1765 |
+
21358.3,
|
1766 |
+
21221.7,
|
1767 |
+
21099.8,
|
1768 |
+
20876,
|
1769 |
+
20705.4,
|
1770 |
+
20820.8,
|
1771 |
+
20854.5,
|
1772 |
+
20863.8,
|
1773 |
+
20825.6,
|
1774 |
+
20755.4,
|
1775 |
+
20725.7,
|
1776 |
+
20767.5
|
1777 |
+
],
|
1778 |
+
"yaxis": "y"
|
1779 |
+
}
|
1780 |
+
],
|
1781 |
+
"layout": {
|
1782 |
+
"font": {
|
1783 |
+
"size": 18
|
1784 |
+
},
|
1785 |
+
"height": 400,
|
1786 |
+
"legend": {
|
1787 |
+
"tracegroupgap": 0
|
1788 |
+
},
|
1789 |
+
"margin": {
|
1790 |
+
"t": 60
|
1791 |
+
},
|
1792 |
+
"template": {
|
1793 |
+
"data": {
|
1794 |
+
"bar": [
|
1795 |
+
{
|
1796 |
+
"error_x": {
|
1797 |
+
"color": "rgb(36,36,36)"
|
1798 |
+
},
|
1799 |
+
"error_y": {
|
1800 |
+
"color": "rgb(36,36,36)"
|
1801 |
+
},
|
1802 |
+
"marker": {
|
1803 |
+
"line": {
|
1804 |
+
"color": "white",
|
1805 |
+
"width": 0.5
|
1806 |
+
},
|
1807 |
+
"pattern": {
|
1808 |
+
"fillmode": "overlay",
|
1809 |
+
"size": 10,
|
1810 |
+
"solidity": 0.2
|
1811 |
+
}
|
1812 |
+
},
|
1813 |
+
"type": "bar"
|
1814 |
+
}
|
1815 |
+
],
|
1816 |
+
"barpolar": [
|
1817 |
+
{
|
1818 |
+
"marker": {
|
1819 |
+
"line": {
|
1820 |
+
"color": "white",
|
1821 |
+
"width": 0.5
|
1822 |
+
},
|
1823 |
+
"pattern": {
|
1824 |
+
"fillmode": "overlay",
|
1825 |
+
"size": 10,
|
1826 |
+
"solidity": 0.2
|
1827 |
+
}
|
1828 |
+
},
|
1829 |
+
"type": "barpolar"
|
1830 |
+
}
|
1831 |
+
],
|
1832 |
+
"carpet": [
|
1833 |
+
{
|
1834 |
+
"aaxis": {
|
1835 |
+
"endlinecolor": "rgb(36,36,36)",
|
1836 |
+
"gridcolor": "white",
|
1837 |
+
"linecolor": "white",
|
1838 |
+
"minorgridcolor": "white",
|
1839 |
+
"startlinecolor": "rgb(36,36,36)"
|
1840 |
+
},
|
1841 |
+
"baxis": {
|
1842 |
+
"endlinecolor": "rgb(36,36,36)",
|
1843 |
+
"gridcolor": "white",
|
1844 |
+
"linecolor": "white",
|
1845 |
+
"minorgridcolor": "white",
|
1846 |
+
"startlinecolor": "rgb(36,36,36)"
|
1847 |
+
},
|
1848 |
+
"type": "carpet"
|
1849 |
+
}
|
1850 |
+
],
|
1851 |
+
"choropleth": [
|
1852 |
+
{
|
1853 |
+
"colorbar": {
|
1854 |
+
"outlinewidth": 1,
|
1855 |
+
"tickcolor": "rgb(36,36,36)",
|
1856 |
+
"ticks": "outside"
|
1857 |
+
},
|
1858 |
+
"type": "choropleth"
|
1859 |
+
}
|
1860 |
+
],
|
1861 |
+
"contour": [
|
1862 |
+
{
|
1863 |
+
"colorbar": {
|
1864 |
+
"outlinewidth": 1,
|
1865 |
+
"tickcolor": "rgb(36,36,36)",
|
1866 |
+
"ticks": "outside"
|
1867 |
+
},
|
1868 |
+
"colorscale": [
|
1869 |
+
[
|
1870 |
+
0,
|
1871 |
+
"#440154"
|
1872 |
+
],
|
1873 |
+
[
|
1874 |
+
0.1111111111111111,
|
1875 |
+
"#482878"
|
1876 |
+
],
|
1877 |
+
[
|
1878 |
+
0.2222222222222222,
|
1879 |
+
"#3e4989"
|
1880 |
+
],
|
1881 |
+
[
|
1882 |
+
0.3333333333333333,
|
1883 |
+
"#31688e"
|
1884 |
+
],
|
1885 |
+
[
|
1886 |
+
0.4444444444444444,
|
1887 |
+
"#26828e"
|
1888 |
+
],
|
1889 |
+
[
|
1890 |
+
0.5555555555555556,
|
1891 |
+
"#1f9e89"
|
1892 |
+
],
|
1893 |
+
[
|
1894 |
+
0.6666666666666666,
|
1895 |
+
"#35b779"
|
1896 |
+
],
|
1897 |
+
[
|
1898 |
+
0.7777777777777778,
|
1899 |
+
"#6ece58"
|
1900 |
+
],
|
1901 |
+
[
|
1902 |
+
0.8888888888888888,
|
1903 |
+
"#b5de2b"
|
1904 |
+
],
|
1905 |
+
[
|
1906 |
+
1,
|
1907 |
+
"#fde725"
|
1908 |
+
]
|
1909 |
+
],
|
1910 |
+
"type": "contour"
|
1911 |
+
}
|
1912 |
+
],
|
1913 |
+
"contourcarpet": [
|
1914 |
+
{
|
1915 |
+
"colorbar": {
|
1916 |
+
"outlinewidth": 1,
|
1917 |
+
"tickcolor": "rgb(36,36,36)",
|
1918 |
+
"ticks": "outside"
|
1919 |
+
},
|
1920 |
+
"type": "contourcarpet"
|
1921 |
+
}
|
1922 |
+
],
|
1923 |
+
"heatmap": [
|
1924 |
+
{
|
1925 |
+
"colorbar": {
|
1926 |
+
"outlinewidth": 1,
|
1927 |
+
"tickcolor": "rgb(36,36,36)",
|
1928 |
+
"ticks": "outside"
|
1929 |
+
},
|
1930 |
+
"colorscale": [
|
1931 |
+
[
|
1932 |
+
0,
|
1933 |
+
"#440154"
|
1934 |
+
],
|
1935 |
+
[
|
1936 |
+
0.1111111111111111,
|
1937 |
+
"#482878"
|
1938 |
+
],
|
1939 |
+
[
|
1940 |
+
0.2222222222222222,
|
1941 |
+
"#3e4989"
|
1942 |
+
],
|
1943 |
+
[
|
1944 |
+
0.3333333333333333,
|
1945 |
+
"#31688e"
|
1946 |
+
],
|
1947 |
+
[
|
1948 |
+
0.4444444444444444,
|
1949 |
+
"#26828e"
|
1950 |
+
],
|
1951 |
+
[
|
1952 |
+
0.5555555555555556,
|
1953 |
+
"#1f9e89"
|
1954 |
+
],
|
1955 |
+
[
|
1956 |
+
0.6666666666666666,
|
1957 |
+
"#35b779"
|
1958 |
+
],
|
1959 |
+
[
|
1960 |
+
0.7777777777777778,
|
1961 |
+
"#6ece58"
|
1962 |
+
],
|
1963 |
+
[
|
1964 |
+
0.8888888888888888,
|
1965 |
+
"#b5de2b"
|
1966 |
+
],
|
1967 |
+
[
|
1968 |
+
1,
|
1969 |
+
"#fde725"
|
1970 |
+
]
|
1971 |
+
],
|
1972 |
+
"type": "heatmap"
|
1973 |
+
}
|
1974 |
+
],
|
1975 |
+
"heatmapgl": [
|
1976 |
+
{
|
1977 |
+
"colorbar": {
|
1978 |
+
"outlinewidth": 1,
|
1979 |
+
"tickcolor": "rgb(36,36,36)",
|
1980 |
+
"ticks": "outside"
|
1981 |
+
},
|
1982 |
+
"colorscale": [
|
1983 |
+
[
|
1984 |
+
0,
|
1985 |
+
"#440154"
|
1986 |
+
],
|
1987 |
+
[
|
1988 |
+
0.1111111111111111,
|
1989 |
+
"#482878"
|
1990 |
+
],
|
1991 |
+
[
|
1992 |
+
0.2222222222222222,
|
1993 |
+
"#3e4989"
|
1994 |
+
],
|
1995 |
+
[
|
1996 |
+
0.3333333333333333,
|
1997 |
+
"#31688e"
|
1998 |
+
],
|
1999 |
+
[
|
2000 |
+
0.4444444444444444,
|
2001 |
+
"#26828e"
|
2002 |
+
],
|
2003 |
+
[
|
2004 |
+
0.5555555555555556,
|
2005 |
+
"#1f9e89"
|
2006 |
+
],
|
2007 |
+
[
|
2008 |
+
0.6666666666666666,
|
2009 |
+
"#35b779"
|
2010 |
+
],
|
2011 |
+
[
|
2012 |
+
0.7777777777777778,
|
2013 |
+
"#6ece58"
|
2014 |
+
],
|
2015 |
+
[
|
2016 |
+
0.8888888888888888,
|
2017 |
+
"#b5de2b"
|
2018 |
+
],
|
2019 |
+
[
|
2020 |
+
1,
|
2021 |
+
"#fde725"
|
2022 |
+
]
|
2023 |
+
],
|
2024 |
+
"type": "heatmapgl"
|
2025 |
+
}
|
2026 |
+
],
|
2027 |
+
"histogram": [
|
2028 |
+
{
|
2029 |
+
"marker": {
|
2030 |
+
"line": {
|
2031 |
+
"color": "white",
|
2032 |
+
"width": 0.6
|
2033 |
+
}
|
2034 |
+
},
|
2035 |
+
"type": "histogram"
|
2036 |
+
}
|
2037 |
+
],
|
2038 |
+
"histogram2d": [
|
2039 |
+
{
|
2040 |
+
"colorbar": {
|
2041 |
+
"outlinewidth": 1,
|
2042 |
+
"tickcolor": "rgb(36,36,36)",
|
2043 |
+
"ticks": "outside"
|
2044 |
+
},
|
2045 |
+
"colorscale": [
|
2046 |
+
[
|
2047 |
+
0,
|
2048 |
+
"#440154"
|
2049 |
+
],
|
2050 |
+
[
|
2051 |
+
0.1111111111111111,
|
2052 |
+
"#482878"
|
2053 |
+
],
|
2054 |
+
[
|
2055 |
+
0.2222222222222222,
|
2056 |
+
"#3e4989"
|
2057 |
+
],
|
2058 |
+
[
|
2059 |
+
0.3333333333333333,
|
2060 |
+
"#31688e"
|
2061 |
+
],
|
2062 |
+
[
|
2063 |
+
0.4444444444444444,
|
2064 |
+
"#26828e"
|
2065 |
+
],
|
2066 |
+
[
|
2067 |
+
0.5555555555555556,
|
2068 |
+
"#1f9e89"
|
2069 |
+
],
|
2070 |
+
[
|
2071 |
+
0.6666666666666666,
|
2072 |
+
"#35b779"
|
2073 |
+
],
|
2074 |
+
[
|
2075 |
+
0.7777777777777778,
|
2076 |
+
"#6ece58"
|
2077 |
+
],
|
2078 |
+
[
|
2079 |
+
0.8888888888888888,
|
2080 |
+
"#b5de2b"
|
2081 |
+
],
|
2082 |
+
[
|
2083 |
+
1,
|
2084 |
+
"#fde725"
|
2085 |
+
]
|
2086 |
+
],
|
2087 |
+
"type": "histogram2d"
|
2088 |
+
}
|
2089 |
+
],
|
2090 |
+
"histogram2dcontour": [
|
2091 |
+
{
|
2092 |
+
"colorbar": {
|
2093 |
+
"outlinewidth": 1,
|
2094 |
+
"tickcolor": "rgb(36,36,36)",
|
2095 |
+
"ticks": "outside"
|
2096 |
+
},
|
2097 |
+
"colorscale": [
|
2098 |
+
[
|
2099 |
+
0,
|
2100 |
+
"#440154"
|
2101 |
+
],
|
2102 |
+
[
|
2103 |
+
0.1111111111111111,
|
2104 |
+
"#482878"
|
2105 |
+
],
|
2106 |
+
[
|
2107 |
+
0.2222222222222222,
|
2108 |
+
"#3e4989"
|
2109 |
+
],
|
2110 |
+
[
|
2111 |
+
0.3333333333333333,
|
2112 |
+
"#31688e"
|
2113 |
+
],
|
2114 |
+
[
|
2115 |
+
0.4444444444444444,
|
2116 |
+
"#26828e"
|
2117 |
+
],
|
2118 |
+
[
|
2119 |
+
0.5555555555555556,
|
2120 |
+
"#1f9e89"
|
2121 |
+
],
|
2122 |
+
[
|
2123 |
+
0.6666666666666666,
|
2124 |
+
"#35b779"
|
2125 |
+
],
|
2126 |
+
[
|
2127 |
+
0.7777777777777778,
|
2128 |
+
"#6ece58"
|
2129 |
+
],
|
2130 |
+
[
|
2131 |
+
0.8888888888888888,
|
2132 |
+
"#b5de2b"
|
2133 |
+
],
|
2134 |
+
[
|
2135 |
+
1,
|
2136 |
+
"#fde725"
|
2137 |
+
]
|
2138 |
+
],
|
2139 |
+
"type": "histogram2dcontour"
|
2140 |
+
}
|
2141 |
+
],
|
2142 |
+
"mesh3d": [
|
2143 |
+
{
|
2144 |
+
"colorbar": {
|
2145 |
+
"outlinewidth": 1,
|
2146 |
+
"tickcolor": "rgb(36,36,36)",
|
2147 |
+
"ticks": "outside"
|
2148 |
+
},
|
2149 |
+
"type": "mesh3d"
|
2150 |
+
}
|
2151 |
+
],
|
2152 |
+
"parcoords": [
|
2153 |
+
{
|
2154 |
+
"line": {
|
2155 |
+
"colorbar": {
|
2156 |
+
"outlinewidth": 1,
|
2157 |
+
"tickcolor": "rgb(36,36,36)",
|
2158 |
+
"ticks": "outside"
|
2159 |
+
}
|
2160 |
+
},
|
2161 |
+
"type": "parcoords"
|
2162 |
+
}
|
2163 |
+
],
|
2164 |
+
"pie": [
|
2165 |
+
{
|
2166 |
+
"automargin": true,
|
2167 |
+
"type": "pie"
|
2168 |
+
}
|
2169 |
+
],
|
2170 |
+
"scatter": [
|
2171 |
+
{
|
2172 |
+
"fillpattern": {
|
2173 |
+
"fillmode": "overlay",
|
2174 |
+
"size": 10,
|
2175 |
+
"solidity": 0.2
|
2176 |
+
},
|
2177 |
+
"type": "scatter"
|
2178 |
+
}
|
2179 |
+
],
|
2180 |
+
"scatter3d": [
|
2181 |
+
{
|
2182 |
+
"line": {
|
2183 |
+
"colorbar": {
|
2184 |
+
"outlinewidth": 1,
|
2185 |
+
"tickcolor": "rgb(36,36,36)",
|
2186 |
+
"ticks": "outside"
|
2187 |
+
}
|
2188 |
+
},
|
2189 |
+
"marker": {
|
2190 |
+
"colorbar": {
|
2191 |
+
"outlinewidth": 1,
|
2192 |
+
"tickcolor": "rgb(36,36,36)",
|
2193 |
+
"ticks": "outside"
|
2194 |
+
}
|
2195 |
+
},
|
2196 |
+
"type": "scatter3d"
|
2197 |
+
}
|
2198 |
+
],
|
2199 |
+
"scattercarpet": [
|
2200 |
+
{
|
2201 |
+
"marker": {
|
2202 |
+
"colorbar": {
|
2203 |
+
"outlinewidth": 1,
|
2204 |
+
"tickcolor": "rgb(36,36,36)",
|
2205 |
+
"ticks": "outside"
|
2206 |
+
}
|
2207 |
+
},
|
2208 |
+
"type": "scattercarpet"
|
2209 |
+
}
|
2210 |
+
],
|
2211 |
+
"scattergeo": [
|
2212 |
+
{
|
2213 |
+
"marker": {
|
2214 |
+
"colorbar": {
|
2215 |
+
"outlinewidth": 1,
|
2216 |
+
"tickcolor": "rgb(36,36,36)",
|
2217 |
+
"ticks": "outside"
|
2218 |
+
}
|
2219 |
+
},
|
2220 |
+
"type": "scattergeo"
|
2221 |
+
}
|
2222 |
+
],
|
2223 |
+
"scattergl": [
|
2224 |
+
{
|
2225 |
+
"marker": {
|
2226 |
+
"colorbar": {
|
2227 |
+
"outlinewidth": 1,
|
2228 |
+
"tickcolor": "rgb(36,36,36)",
|
2229 |
+
"ticks": "outside"
|
2230 |
+
}
|
2231 |
+
},
|
2232 |
+
"type": "scattergl"
|
2233 |
+
}
|
2234 |
+
],
|
2235 |
+
"scattermapbox": [
|
2236 |
+
{
|
2237 |
+
"marker": {
|
2238 |
+
"colorbar": {
|
2239 |
+
"outlinewidth": 1,
|
2240 |
+
"tickcolor": "rgb(36,36,36)",
|
2241 |
+
"ticks": "outside"
|
2242 |
+
}
|
2243 |
+
},
|
2244 |
+
"type": "scattermapbox"
|
2245 |
+
}
|
2246 |
+
],
|
2247 |
+
"scatterpolar": [
|
2248 |
+
{
|
2249 |
+
"marker": {
|
2250 |
+
"colorbar": {
|
2251 |
+
"outlinewidth": 1,
|
2252 |
+
"tickcolor": "rgb(36,36,36)",
|
2253 |
+
"ticks": "outside"
|
2254 |
+
}
|
2255 |
+
},
|
2256 |
+
"type": "scatterpolar"
|
2257 |
+
}
|
2258 |
+
],
|
2259 |
+
"scatterpolargl": [
|
2260 |
+
{
|
2261 |
+
"marker": {
|
2262 |
+
"colorbar": {
|
2263 |
+
"outlinewidth": 1,
|
2264 |
+
"tickcolor": "rgb(36,36,36)",
|
2265 |
+
"ticks": "outside"
|
2266 |
+
}
|
2267 |
+
},
|
2268 |
+
"type": "scatterpolargl"
|
2269 |
+
}
|
2270 |
+
],
|
2271 |
+
"scatterternary": [
|
2272 |
+
{
|
2273 |
+
"marker": {
|
2274 |
+
"colorbar": {
|
2275 |
+
"outlinewidth": 1,
|
2276 |
+
"tickcolor": "rgb(36,36,36)",
|
2277 |
+
"ticks": "outside"
|
2278 |
+
}
|
2279 |
+
},
|
2280 |
+
"type": "scatterternary"
|
2281 |
+
}
|
2282 |
+
],
|
2283 |
+
"surface": [
|
2284 |
+
{
|
2285 |
+
"colorbar": {
|
2286 |
+
"outlinewidth": 1,
|
2287 |
+
"tickcolor": "rgb(36,36,36)",
|
2288 |
+
"ticks": "outside"
|
2289 |
+
},
|
2290 |
+
"colorscale": [
|
2291 |
+
[
|
2292 |
+
0,
|
2293 |
+
"#440154"
|
2294 |
+
],
|
2295 |
+
[
|
2296 |
+
0.1111111111111111,
|
2297 |
+
"#482878"
|
2298 |
+
],
|
2299 |
+
[
|
2300 |
+
0.2222222222222222,
|
2301 |
+
"#3e4989"
|
2302 |
+
],
|
2303 |
+
[
|
2304 |
+
0.3333333333333333,
|
2305 |
+
"#31688e"
|
2306 |
+
],
|
2307 |
+
[
|
2308 |
+
0.4444444444444444,
|
2309 |
+
"#26828e"
|
2310 |
+
],
|
2311 |
+
[
|
2312 |
+
0.5555555555555556,
|
2313 |
+
"#1f9e89"
|
2314 |
+
],
|
2315 |
+
[
|
2316 |
+
0.6666666666666666,
|
2317 |
+
"#35b779"
|
2318 |
+
],
|
2319 |
+
[
|
2320 |
+
0.7777777777777778,
|
2321 |
+
"#6ece58"
|
2322 |
+
],
|
2323 |
+
[
|
2324 |
+
0.8888888888888888,
|
2325 |
+
"#b5de2b"
|
2326 |
+
],
|
2327 |
+
[
|
2328 |
+
1,
|
2329 |
+
"#fde725"
|
2330 |
+
]
|
2331 |
+
],
|
2332 |
+
"type": "surface"
|
2333 |
+
}
|
2334 |
+
],
|
2335 |
+
"table": [
|
2336 |
+
{
|
2337 |
+
"cells": {
|
2338 |
+
"fill": {
|
2339 |
+
"color": "rgb(237,237,237)"
|
2340 |
+
},
|
2341 |
+
"line": {
|
2342 |
+
"color": "white"
|
2343 |
+
}
|
2344 |
+
},
|
2345 |
+
"header": {
|
2346 |
+
"fill": {
|
2347 |
+
"color": "rgb(217,217,217)"
|
2348 |
+
},
|
2349 |
+
"line": {
|
2350 |
+
"color": "white"
|
2351 |
+
}
|
2352 |
+
},
|
2353 |
+
"type": "table"
|
2354 |
+
}
|
2355 |
+
]
|
2356 |
+
},
|
2357 |
+
"layout": {
|
2358 |
+
"annotationdefaults": {
|
2359 |
+
"arrowhead": 0,
|
2360 |
+
"arrowwidth": 1
|
2361 |
+
},
|
2362 |
+
"autotypenumbers": "strict",
|
2363 |
+
"coloraxis": {
|
2364 |
+
"colorbar": {
|
2365 |
+
"outlinewidth": 1,
|
2366 |
+
"tickcolor": "rgb(36,36,36)",
|
2367 |
+
"ticks": "outside"
|
2368 |
+
}
|
2369 |
+
},
|
2370 |
+
"colorscale": {
|
2371 |
+
"diverging": [
|
2372 |
+
[
|
2373 |
+
0,
|
2374 |
+
"rgb(103,0,31)"
|
2375 |
+
],
|
2376 |
+
[
|
2377 |
+
0.1,
|
2378 |
+
"rgb(178,24,43)"
|
2379 |
+
],
|
2380 |
+
[
|
2381 |
+
0.2,
|
2382 |
+
"rgb(214,96,77)"
|
2383 |
+
],
|
2384 |
+
[
|
2385 |
+
0.3,
|
2386 |
+
"rgb(244,165,130)"
|
2387 |
+
],
|
2388 |
+
[
|
2389 |
+
0.4,
|
2390 |
+
"rgb(253,219,199)"
|
2391 |
+
],
|
2392 |
+
[
|
2393 |
+
0.5,
|
2394 |
+
"rgb(247,247,247)"
|
2395 |
+
],
|
2396 |
+
[
|
2397 |
+
0.6,
|
2398 |
+
"rgb(209,229,240)"
|
2399 |
+
],
|
2400 |
+
[
|
2401 |
+
0.7,
|
2402 |
+
"rgb(146,197,222)"
|
2403 |
+
],
|
2404 |
+
[
|
2405 |
+
0.8,
|
2406 |
+
"rgb(67,147,195)"
|
2407 |
+
],
|
2408 |
+
[
|
2409 |
+
0.9,
|
2410 |
+
"rgb(33,102,172)"
|
2411 |
+
],
|
2412 |
+
[
|
2413 |
+
1,
|
2414 |
+
"rgb(5,48,97)"
|
2415 |
+
]
|
2416 |
+
],
|
2417 |
+
"sequential": [
|
2418 |
+
[
|
2419 |
+
0,
|
2420 |
+
"#440154"
|
2421 |
+
],
|
2422 |
+
[
|
2423 |
+
0.1111111111111111,
|
2424 |
+
"#482878"
|
2425 |
+
],
|
2426 |
+
[
|
2427 |
+
0.2222222222222222,
|
2428 |
+
"#3e4989"
|
2429 |
+
],
|
2430 |
+
[
|
2431 |
+
0.3333333333333333,
|
2432 |
+
"#31688e"
|
2433 |
+
],
|
2434 |
+
[
|
2435 |
+
0.4444444444444444,
|
2436 |
+
"#26828e"
|
2437 |
+
],
|
2438 |
+
[
|
2439 |
+
0.5555555555555556,
|
2440 |
+
"#1f9e89"
|
2441 |
+
],
|
2442 |
+
[
|
2443 |
+
0.6666666666666666,
|
2444 |
+
"#35b779"
|
2445 |
+
],
|
2446 |
+
[
|
2447 |
+
0.7777777777777778,
|
2448 |
+
"#6ece58"
|
2449 |
+
],
|
2450 |
+
[
|
2451 |
+
0.8888888888888888,
|
2452 |
+
"#b5de2b"
|
2453 |
+
],
|
2454 |
+
[
|
2455 |
+
1,
|
2456 |
+
"#fde725"
|
2457 |
+
]
|
2458 |
+
],
|
2459 |
+
"sequentialminus": [
|
2460 |
+
[
|
2461 |
+
0,
|
2462 |
+
"#440154"
|
2463 |
+
],
|
2464 |
+
[
|
2465 |
+
0.1111111111111111,
|
2466 |
+
"#482878"
|
2467 |
+
],
|
2468 |
+
[
|
2469 |
+
0.2222222222222222,
|
2470 |
+
"#3e4989"
|
2471 |
+
],
|
2472 |
+
[
|
2473 |
+
0.3333333333333333,
|
2474 |
+
"#31688e"
|
2475 |
+
],
|
2476 |
+
[
|
2477 |
+
0.4444444444444444,
|
2478 |
+
"#26828e"
|
2479 |
+
],
|
2480 |
+
[
|
2481 |
+
0.5555555555555556,
|
2482 |
+
"#1f9e89"
|
2483 |
+
],
|
2484 |
+
[
|
2485 |
+
0.6666666666666666,
|
2486 |
+
"#35b779"
|
2487 |
+
],
|
2488 |
+
[
|
2489 |
+
0.7777777777777778,
|
2490 |
+
"#6ece58"
|
2491 |
+
],
|
2492 |
+
[
|
2493 |
+
0.8888888888888888,
|
2494 |
+
"#b5de2b"
|
2495 |
+
],
|
2496 |
+
[
|
2497 |
+
1,
|
2498 |
+
"#fde725"
|
2499 |
+
]
|
2500 |
+
]
|
2501 |
+
},
|
2502 |
+
"colorway": [
|
2503 |
+
"#1F77B4",
|
2504 |
+
"#FF7F0E",
|
2505 |
+
"#2CA02C",
|
2506 |
+
"#D62728",
|
2507 |
+
"#9467BD",
|
2508 |
+
"#8C564B",
|
2509 |
+
"#E377C2",
|
2510 |
+
"#7F7F7F",
|
2511 |
+
"#BCBD22",
|
2512 |
+
"#17BECF"
|
2513 |
+
],
|
2514 |
+
"font": {
|
2515 |
+
"color": "rgb(36,36,36)"
|
2516 |
+
},
|
2517 |
+
"geo": {
|
2518 |
+
"bgcolor": "white",
|
2519 |
+
"lakecolor": "white",
|
2520 |
+
"landcolor": "white",
|
2521 |
+
"showlakes": true,
|
2522 |
+
"showland": true,
|
2523 |
+
"subunitcolor": "white"
|
2524 |
+
},
|
2525 |
+
"hoverlabel": {
|
2526 |
+
"align": "left"
|
2527 |
+
},
|
2528 |
+
"hovermode": "closest",
|
2529 |
+
"mapbox": {
|
2530 |
+
"style": "light"
|
2531 |
+
},
|
2532 |
+
"paper_bgcolor": "white",
|
2533 |
+
"plot_bgcolor": "white",
|
2534 |
+
"polar": {
|
2535 |
+
"angularaxis": {
|
2536 |
+
"gridcolor": "rgb(232,232,232)",
|
2537 |
+
"linecolor": "rgb(36,36,36)",
|
2538 |
+
"showgrid": false,
|
2539 |
+
"showline": true,
|
2540 |
+
"ticks": "outside"
|
2541 |
+
},
|
2542 |
+
"bgcolor": "white",
|
2543 |
+
"radialaxis": {
|
2544 |
+
"gridcolor": "rgb(232,232,232)",
|
2545 |
+
"linecolor": "rgb(36,36,36)",
|
2546 |
+
"showgrid": false,
|
2547 |
+
"showline": true,
|
2548 |
+
"ticks": "outside"
|
2549 |
+
}
|
2550 |
+
},
|
2551 |
+
"scene": {
|
2552 |
+
"xaxis": {
|
2553 |
+
"backgroundcolor": "white",
|
2554 |
+
"gridcolor": "rgb(232,232,232)",
|
2555 |
+
"gridwidth": 2,
|
2556 |
+
"linecolor": "rgb(36,36,36)",
|
2557 |
+
"showbackground": true,
|
2558 |
+
"showgrid": false,
|
2559 |
+
"showline": true,
|
2560 |
+
"ticks": "outside",
|
2561 |
+
"zeroline": false,
|
2562 |
+
"zerolinecolor": "rgb(36,36,36)"
|
2563 |
+
},
|
2564 |
+
"yaxis": {
|
2565 |
+
"backgroundcolor": "white",
|
2566 |
+
"gridcolor": "rgb(232,232,232)",
|
2567 |
+
"gridwidth": 2,
|
2568 |
+
"linecolor": "rgb(36,36,36)",
|
2569 |
+
"showbackground": true,
|
2570 |
+
"showgrid": false,
|
2571 |
+
"showline": true,
|
2572 |
+
"ticks": "outside",
|
2573 |
+
"zeroline": false,
|
2574 |
+
"zerolinecolor": "rgb(36,36,36)"
|
2575 |
+
},
|
2576 |
+
"zaxis": {
|
2577 |
+
"backgroundcolor": "white",
|
2578 |
+
"gridcolor": "rgb(232,232,232)",
|
2579 |
+
"gridwidth": 2,
|
2580 |
+
"linecolor": "rgb(36,36,36)",
|
2581 |
+
"showbackground": true,
|
2582 |
+
"showgrid": false,
|
2583 |
+
"showline": true,
|
2584 |
+
"ticks": "outside",
|
2585 |
+
"zeroline": false,
|
2586 |
+
"zerolinecolor": "rgb(36,36,36)"
|
2587 |
+
}
|
2588 |
+
},
|
2589 |
+
"shapedefaults": {
|
2590 |
+
"fillcolor": "black",
|
2591 |
+
"line": {
|
2592 |
+
"width": 0
|
2593 |
+
},
|
2594 |
+
"opacity": 0.3
|
2595 |
+
},
|
2596 |
+
"ternary": {
|
2597 |
+
"aaxis": {
|
2598 |
+
"gridcolor": "rgb(232,232,232)",
|
2599 |
+
"linecolor": "rgb(36,36,36)",
|
2600 |
+
"showgrid": false,
|
2601 |
+
"showline": true,
|
2602 |
+
"ticks": "outside"
|
2603 |
+
},
|
2604 |
+
"baxis": {
|
2605 |
+
"gridcolor": "rgb(232,232,232)",
|
2606 |
+
"linecolor": "rgb(36,36,36)",
|
2607 |
+
"showgrid": false,
|
2608 |
+
"showline": true,
|
2609 |
+
"ticks": "outside"
|
2610 |
+
},
|
2611 |
+
"bgcolor": "white",
|
2612 |
+
"caxis": {
|
2613 |
+
"gridcolor": "rgb(232,232,232)",
|
2614 |
+
"linecolor": "rgb(36,36,36)",
|
2615 |
+
"showgrid": false,
|
2616 |
+
"showline": true,
|
2617 |
+
"ticks": "outside"
|
2618 |
+
}
|
2619 |
+
},
|
2620 |
+
"title": {
|
2621 |
+
"x": 0.05
|
2622 |
+
},
|
2623 |
+
"xaxis": {
|
2624 |
+
"automargin": true,
|
2625 |
+
"gridcolor": "rgb(232,232,232)",
|
2626 |
+
"linecolor": "rgb(36,36,36)",
|
2627 |
+
"showgrid": false,
|
2628 |
+
"showline": true,
|
2629 |
+
"ticks": "outside",
|
2630 |
+
"title": {
|
2631 |
+
"standoff": 15
|
2632 |
+
},
|
2633 |
+
"zeroline": false,
|
2634 |
+
"zerolinecolor": "rgb(36,36,36)"
|
2635 |
+
},
|
2636 |
+
"yaxis": {
|
2637 |
+
"automargin": true,
|
2638 |
+
"gridcolor": "rgb(232,232,232)",
|
2639 |
+
"linecolor": "rgb(36,36,36)",
|
2640 |
+
"showgrid": false,
|
2641 |
+
"showline": true,
|
2642 |
+
"ticks": "outside",
|
2643 |
+
"title": {
|
2644 |
+
"standoff": 15
|
2645 |
+
},
|
2646 |
+
"zeroline": false,
|
2647 |
+
"zerolinecolor": "rgb(36,36,36)"
|
2648 |
+
}
|
2649 |
+
}
|
2650 |
+
},
|
2651 |
+
"title": {
|
2652 |
+
"text": "M2SL",
|
2653 |
+
"x": 0.5
|
2654 |
+
},
|
2655 |
+
"width": 650,
|
2656 |
+
"xaxis": {
|
2657 |
+
"anchor": "y",
|
2658 |
+
"domain": [
|
2659 |
+
0,
|
2660 |
+
1
|
2661 |
+
],
|
2662 |
+
"title": {
|
2663 |
+
"text": "datetime"
|
2664 |
+
}
|
2665 |
+
},
|
2666 |
+
"yaxis": {
|
2667 |
+
"anchor": "x",
|
2668 |
+
"domain": [
|
2669 |
+
0,
|
2670 |
+
1
|
2671 |
+
],
|
2672 |
+
"title": {
|
2673 |
+
"text": "M2SL"
|
2674 |
+
}
|
2675 |
+
}
|
2676 |
+
}
|
2677 |
+
}
|
2678 |
+
},
|
2679 |
+
"metadata": {},
|
2680 |
+
"output_type": "display_data"
|
2681 |
+
}
|
2682 |
+
],
|
2683 |
+
"source": [
|
2684 |
+
"y = \"M2SL\"\n",
|
2685 |
+
"fig = px.line(df[y], x=\"datetime\", y=y, labels={\"Month\": \"Date\"})\n",
|
2686 |
+
"fig.update_layout(\n",
|
2687 |
+
" template=\"simple_white\",\n",
|
2688 |
+
" font=dict(size=18),\n",
|
2689 |
+
" title_text=y,\n",
|
2690 |
+
" width=650,\n",
|
2691 |
+
" title_x=0.5,\n",
|
2692 |
+
" height=400,\n",
|
2693 |
+
")\n",
|
2694 |
+
"fig.show()"
|
2695 |
+
]
|
2696 |
+
},
|
2697 |
+
{
|
2698 |
+
"cell_type": "code",
|
2699 |
+
"execution_count": null,
|
2700 |
+
"metadata": {},
|
2701 |
+
"outputs": [],
|
2702 |
+
"source": []
|
2703 |
+
},
|
2704 |
+
{
|
2705 |
+
"cell_type": "code",
|
2706 |
+
"execution_count": 11,
|
2707 |
+
"metadata": {},
|
2708 |
+
"outputs": [],
|
2709 |
+
"source": [
|
2710 |
+
"x = df[\"coal_price_data\"].newcastle\n",
|
2711 |
+
"y = df[\"coal_price_data\"].ICI_1\n",
|
2712 |
+
"\n",
|
2713 |
+
"slope, intercept, r, p, std_err = stats.linregress(x, y)"
|
2714 |
+
]
|
2715 |
+
},
|
2716 |
+
{
|
2717 |
+
"cell_type": "code",
|
2718 |
+
"execution_count": 12,
|
2719 |
+
"metadata": {},
|
2720 |
+
"outputs": [
|
2721 |
+
{
|
2722 |
+
"name": "stdout",
|
2723 |
+
"output_type": "stream",
|
2724 |
+
"text": [
|
2725 |
+
"slope: 0.600533935403765\n",
|
2726 |
+
"intercept: 33.65381401159914\n",
|
2727 |
+
"r: 0.9606500704209069\n",
|
2728 |
+
"p: 1.9310655623962052e-81\n",
|
2729 |
+
"std_err: 0.01452032511898455\n"
|
2730 |
+
]
|
2731 |
+
}
|
2732 |
+
],
|
2733 |
+
"source": [
|
2734 |
+
"print(f\"slope: {slope}\")\n",
|
2735 |
+
"print(f\"intercept: {intercept}\")\n",
|
2736 |
+
"print(f\"r: {r}\")\n",
|
2737 |
+
"print(f\"p: {p}\")\n",
|
2738 |
+
"print(f\"std_err: {std_err}\")"
|
2739 |
+
]
|
2740 |
+
},
|
2741 |
+
{
|
2742 |
+
"cell_type": "code",
|
2743 |
+
"execution_count": 13,
|
2744 |
+
"metadata": {},
|
2745 |
+
"outputs": [],
|
2746 |
+
"source": [
|
2747 |
+
"x = df[\"coal_price_data\"][\"newcastle\"]\n",
|
2748 |
+
"y = df[\"M2SL\"][\"M2SL\"]\n",
|
2749 |
+
"\n",
|
2750 |
+
"slope, intercept, r, p, std_err = stats.linregress(x, y)"
|
2751 |
+
]
|
2752 |
+
},
|
2753 |
+
{
|
2754 |
+
"cell_type": "code",
|
2755 |
+
"execution_count": 14,
|
2756 |
+
"metadata": {},
|
2757 |
+
"outputs": [
|
2758 |
+
{
|
2759 |
+
"name": "stdout",
|
2760 |
+
"output_type": "stream",
|
2761 |
+
"text": [
|
2762 |
+
"slope: -20.46182026230733\n",
|
2763 |
+
"intercept: 17246.85603449831\n",
|
2764 |
+
"r: -0.4331490046040797\n",
|
2765 |
+
"p: 5.279632704944257e-08\n",
|
2766 |
+
"std_err: 3.5605661278914575\n"
|
2767 |
+
]
|
2768 |
+
}
|
2769 |
+
],
|
2770 |
+
"source": [
|
2771 |
+
"print(f\"slope: {slope}\")\n",
|
2772 |
+
"print(f\"intercept: {intercept}\")\n",
|
2773 |
+
"print(f\"r: {r}\")\n",
|
2774 |
+
"print(f\"p: {p}\")\n",
|
2775 |
+
"print(f\"std_err: {std_err}\")"
|
2776 |
+
]
|
2777 |
+
},
|
2778 |
+
{
|
2779 |
+
"cell_type": "code",
|
2780 |
+
"execution_count": 15,
|
2781 |
+
"metadata": {},
|
2782 |
+
"outputs": [
|
2783 |
+
{
|
2784 |
+
"data": {
|
2785 |
+
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAlYAAAGwCAYAAABrUCsdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAABt/ElEQVR4nO3de1yUVf4H8M8Md5EZRISBRCU1lVDJG1JeUlFQoizb0qy1Mt0MLLUM3c1b7a6XdruYptXuL9s1tWzzbhhKSCreUEJETQ3vDJjIDKBcZJ7fH48zMjDADDwwFz7v12teOs8588w5Djpfz+V7ZIIgCCAiIiKiRpNbuwFEREREjoKBFREREZFEGFgRERERSYSBFREREZFEGFgRERERSYSBFREREZFEGFgRERERScTZ2g1wFDqdDteuXYOXlxdkMpm1m0NERERmEAQBRUVFCAwMhFze+PEmBlYSuXbtGoKCgqzdDCIiImqAy5cvo3379o2+DwMriXh5eQEQPxiFQmHl1hAREZE5tFotgoKCDN/jjcXASiL66T+FQsHAioiIyM5ItYyHi9eJiIiIJMLAioiIiEgiDKyIiIiIJGLVwGrx4sXo378/vLy84Ofnh7Fjx+LMmTOG8oKCAkyfPh3dunWDh4cHOnTogNdffx0ajcboPpcuXUJMTAxatWoFPz8/zJ49G3fu3DGqk5KSgj59+sDNzQ1dunTBmjVrarRn5cqV6NSpE9zd3REeHo7Dhw83Sb+JiIjIMVk1sNq7dy/i4uJw8OBBJCUloaKiAqNGjUJJSQkAMYXBtWvX8I9//ANZWVlYs2YNEhMTMXnyZMM9KisrERMTg/Lychw4cABfffUV1qxZg/nz5xvq5OTkICYmBsOGDUNGRgZmzJiBV155Bbt27TLU+eabbzBr1iwsWLAAx44dQ+/evREVFYX8/Pzm+wMhIiIiuyYTBEGwdiP0rl+/Dj8/P+zduxdDhgwxWWfjxo14/vnnUVJSAmdnZ/zwww947LHHcO3aNfj7+wMAVq9ejYSEBFy/fh2urq5ISEjAjh07kJWVZbjP+PHjUVhYiMTERABAeHg4+vfvjxUrVgAQE34GBQVh+vTpmDNnTo12lJWVoayszPBcv11To9FwVyAREZGd0Gq1UCqVkn1/29QaK/0Un4+PT511FAoFnJ3FTBFpaWno2bOnIagCgKioKGi1Wpw8edJQJzIy0ug+UVFRSEtLAwCUl5cjPT3dqI5cLkdkZKShTnWLFy+GUqk0PJgclIiIiGwmsNLpdJgxYwYeeeQRhIaGmqzz+++/47333sPUqVMN19RqtVFQBcDwXK1W11lHq9Xi9u3b+P3331FZWWmyjv4e1c2dOxcajcbwuHz5smUdJiIiIodjMwlC4+LikJWVhX379pks12q1iImJQUhICBYuXNi8jTPBzc0Nbm5u1m4GERER2RCbCKzi4+Oxfft2pKammjynp6ioCNHR0fDy8sKmTZvg4uJiKFOpVDV27+Xl5RnK9L/qr1Wto1Ao4OHhAScnJzg5OZmso78HAZU6AYdzCpBfVAo/L3cMCPaBk7xmplpz6xERETkaqwZWgiBg+vTp2LRpE1JSUhAcHFyjjlarRVRUFNzc3LB161a4u7sblUdEROBvf/sb8vPz4efnBwBISkqCQqFASEiIoc7OnTuNXpeUlISIiAgAgKurK/r27Ys9e/Zg7NixAMSpyT179iA+Pl7qbtudSp2AFcln8eX+Cyi8XWG4HqB0x7yYHmjj6WYIom6WlOPd7dlQa0sN9fy93PBceAd08vVkoEVERA7NqrsCX3vtNaxbtw5btmxBt27dDNeVSiU8PDyg1WoxatQo3Lp1C5s2bYKnp6ehTrt27eDk5ITKykqEhYUhMDAQy5Ytg1qtxgsvvIBXXnkFf//73wGI6RZCQ0MRFxeHl19+GcnJyXj99dexY8cOREVFARDTLUyaNAmfffYZBgwYgI8++gjffvstTp8+XWPtlSlS7yqwFYlZuZjz/QkU3qqov7KZApTuWBAbgujQAMnuSURE1BBSf39bNbCq7cDDL7/8Ei+++CJSUlIwbNgwk3VycnLQqVMnAMDFixcxbdo0pKSkwNPTE5MmTcKSJUsMOwcBMUHozJkzkZ2djfbt22PevHl48cUXje65YsUKvP/++1Cr1QgLC8Py5csRHh5uVl8cMbBKzMrFtLXHIPUPiP5TX/V8HwZXRERkVQ4VWDkSRwusKnUCBi1NRq6mtP7KDeTt4YKVE/tg4P1tOTVIRERW4dB5rMh2HM4paNKgCgAKb1dg4r8OYdDSZCRm5TbpexERETUHBlZkUn5R0wZVVak1pZi29hiDKyIisnsMrMgkPy/3+itJRLj7WLQtG5U6zkwTEZH9YmBFJg0I9kGAsvmCKwDI1ZTicE5Bs74nERGRlBhYkUlOchkWxIY0+/smZZs+QoiIiMgeMLCiWkWHBuDT5/qgsRv2asmqYdKWjGucDiQiIrvFwIrqNKZXAFZMeKhR9/BylaO1m5NZdW+UlHM6kIiI7BYDK6rXmF6BWP18nxprrgKU7ojs0a7e12vLdCguqzT7/ZpzRyIREZGUbOIQZrJ90aEBGBmiqnG48orkc9h96rqk79WcOxKJiIikxMCKzOYklyGic1vD88SsXHy4+1dJ3yNAKQZsRERE9ohTgdQglToBC7dmS37fBbEhPN6GiIjsFgMrapAVyWeh1kq3Fsq7lQtW81BmIiKyc5wKJIuJU4BnJbmXdysXvPRwMOKHd+FIFRER2T0GVmSRSp2ARdsaPwXo3coFKyf0wcDObRlQERGRw2BgRWap1Ak4nFOA/eeuI1fT+CnAwlsVkMtlDKqIiMihMLCieiVm5WLRtmxJAqqqmK+KiIgcDQMrMkk/QpWUrcb/7b/QJO9RW74q/XtXzZfFkS0iIrIHDKyohsaOUPl7uQKQIa+orM56yafzjPJi1fbeAUp3LIgNQXRoAIMuIiKyaQysyEhiVi6mrT2GhhyDrA9vxj50H745eqXe+l/8nAO5DJg7JqTO91ZrSjFt7TFMHRKMrb/k1hp0ERERWZtMEISGfIdSNVqtFkqlEhqNBgqFwtrNaZBKnYBBS5MbPFIVoHTH470D8HlqjtmBmVwGnH5vNJzksga9tz6Y+2R8GPKKynCx4BY6+rTCCxGd4OrMNG1ERFQ3qb+/OWJFBodzChoUVMUP64JHuviib8c2GPr+TxaNdukE4L9pFxASqGzQe+vfK35DhtH1v+08hSmDg/F2dA9OHRIRUbNhYEUGlu7SkwFQKd0xc+QDcJLLkHb+RoOCo4sFt+Dr5Wbx6+qiE4DPUnPw34OXcKu80nCdU4dERNSUOFdCBrXt0jNFP+ZT9Wy/hqZP6OjTyqL3tkTVoAq4t14rMSu3Sd6PiIhaNgZWZHCzpO5dfFWplO5YVe1sv4YER3IZ8EJEJwwI9kGA0h1NPUmnnzpctC0blTouLyQiImkxsCIA4sL193acqrfeSw93wvopA7EvYXiN6TR9cGSJKYOD4eosh5NchgWx4u7A5giucjWlOJxT0MTvRERELQ0DKwJg/sL1UQ+qEFHL+X5VgyNzjOjezpBqAQCiQwOw6vk+UFULzgKU7vjTkGDIIG3QxczvREQkNS5eJwDmBxn11YsODcDMyAfw4e5f673XK4M7m3z9yBCVyZ18D3VoI+nROk21rouIiFouBlYEAPBtbd6uPHOCkfjhXbD+8EWotabXbOl3Ew4I9jFZ7iSX1cjIDpgOupJP5+GLn3PMaru5709ERNRQDKwIiVm5WLAlq956chnQt2Obeus5yWVY+PiDmLb2GAAY5bUytZvQEtWDrojObSGXiVncq65Fl8kAQRDfT8r3JyIiqgszr0vEXjOvW3qEzfopA02OJtV277rO/ZNS+R0d/pt2wSjzevLpvGZ7fyIisk/MvE6SqdQJWLQt26JM6ZYs+K5rvZTUXJ3lmDz4fqu9PxEREcDAqkVryBE2li74rm29VHOx9vsTEVHLwsCqBbNk9IkLvomIiOrHPFYtmKWjT1zwTUREVDcGVi2YucfIBJg4voaIiIhqYmDVwo3v36HOxeszI7uaPL6GiIiIauIaqxbKVCqEqpiWgIiIyHIMrFqg+nJXzYzsivjhXbmeioiIyEKcCmxh6stdJQOw4cjl5mwSERGRw7BqYLV48WL0798fXl5e8PPzw9ixY3HmzBmjOqWlpYiLi0Pbtm3RunVrjBs3Dnl5eUZ1Ll26hJiYGLRq1Qp+fn6YPXs27ty5Y1QnJSUFffr0gZubG7p06YI1a9bUaM/KlSvRqVMnuLu7Izw8HIcPH5a8z9ZWX+4qAUCuphSHcwqar1FEREQOwqqB1d69exEXF4eDBw8iKSkJFRUVGDVqFEpKSgx1Zs6ciW3btmHjxo3Yu3cvrl27hqeeespQXllZiZiYGJSXl+PAgQP46quvsGbNGsyfP99QJycnBzExMRg2bBgyMjIwY8YMvPLKK9i1a5ehzjfffINZs2ZhwYIFOHbsGHr37o2oqCjk5+c3zx9GMzE3d5UlOa6IiIhIZFNnBV6/fh1+fn7Yu3cvhgwZAo1Gg3bt2mHdunV4+umnAQCnT59Gjx49kJaWhoEDB+KHH37AY489hmvXrsHf3x8AsHr1aiQkJOD69etwdXVFQkICduzYgaysewcNjx8/HoWFhUhMTAQAhIeHo3///lixYgUAQKfTISgoCNOnT8ecOXPqbbu9nBWYdv4GJnxxsN56lpwJSEREZK+k/v62qTVWGo0GAODjI2b3Tk9PR0VFBSIjIw11unfvjg4dOiAtLQ0AkJaWhp49exqCKgCIioqCVqvFyZMnDXWq3kNfR3+P8vJypKenG9WRy+WIjIw01KmurKwMWq3W6GEP6stdJYO4I5AZ1omIiCxnM4GVTqfDjBkz8MgjjyA0NBQAoFar4erqCm9vb6O6/v7+UKvVhjpVgyp9ub6srjparRa3b9/G77//jsrKSpN19PeobvHixVAqlYZHUFBQwzrezJzkMiyIDam1XADweO8A7ggkIiJqAJsJrOLi4pCVlYUNGzZYuylmmTt3LjQajeFx+bL97KSLDg3A1CHBtZZ/npqDxKzcZmwRERGRY7CJwCo+Ph7bt2/HTz/9hPbt2xuuq1QqlJeXo7Cw0Kh+Xl4eVCqVoU71XYL65/XVUSgU8PDwgK+vL5ycnEzW0d+jOjc3NygUCqOHvajUCdj6S92B06Jt2ajU2czyOyIiIrtg1cBKEATEx8dj06ZNSE5ORnCw8ShK37594eLigj179hiunTlzBpcuXUJERAQAICIiAidOnDDavZeUlASFQoGQkBBDnar30NfR38PV1RV9+/Y1qqPT6bBnzx5DHUfClAtERERNw6qZ1+Pi4rBu3Tps2bIFXl5ehvVMSqUSHh4eUCqVmDx5MmbNmgUfHx8oFApMnz4dERERGDhwIABg1KhRCAkJwQsvvIBly5ZBrVbjnXfeQVxcHNzc3AAAr776KlasWIG3334bL7/8MpKTk/Htt99ix44dhrbMmjULkyZNQr9+/TBgwAB89NFHKCkpwUsvvdT8fzBNjCkXiIiImoZVA6tVq1YBAB599FGj619++SVefPFFAMCHH34IuVyOcePGoaysDFFRUfj0008NdZ2cnLB9+3ZMmzYNERER8PT0xKRJk/Duu+8a6gQHB2PHjh2YOXMmPv74Y7Rv3x7/+te/EBUVZajz7LPP4vr165g/fz7UajXCwsKQmJhYY0G7varUCTicU4D8olL8XlRm1mv8vNybuFVERESOxabyWNkzW85jZerAZbkMqG0JlQyASumOfQnDuTuQiIgcmtTf3zyE2cHVduByXUEVACyIDWFQRUREZCGb2BVITaO+A5cBceSqKpXSHaue74Po0IAmbRsREZEj4oiVA6tv9x8gjlzNi+kBXy83+HmJGdc5UkVERNQwDKwcmLm7+ny93PBE2H1N3BoiIiLHx6lAB2burj7u/iMiIpIGAysHpj9wuS48cJmIiEg6DKwcmJNchsd7170InQcuExERSYeBlQMz50zArb/k8kxAIiIiiTCwcmDm7ArkmYBERETSYWDlwHgmIBERUfNiYOXAuCuQiIioeTGwcmADgn3g3cql1nIZuCuQiIhISgysHFhSthqFtypqLRfAMwGJiIikxMDKQenPCayLdysXjAxRNVOLiIiIHB8DKwdlzo7AwlsV3BFIREQkIQZWDoo7AomIiJofAysHdeH3ErPqcUcgERGRdBhYOaBKnYD1hy/VW487AomIiKTFwMoBHc4pgFpbVm+98f07cEcgERGRhBhYOSBz10118m3VxC0hIiJqWRhYOSBmXCciIrIOBlYOaECwDwKUdQdNXF9FREQkPQZWDshJLsPjvQPqrPN47wCuryIiIpIYAysHVKkTsPWX3DrrbP0lF5U6oZlaRERE1DIwsHJA5mRdz9WUGmVdr9QJSDt/A1syriLt/A0GXURERA3gbO0GkPQszbqemJWLRduyjYKxAKU7FsSGIDq07ilFIiIiuocjVg7Ikl2BiVm5mLb2WI0RLrWmFNPWHkNiVt1TikRERHQPAysHpN8VWNvSdBnEEam+Hdtg0bZsmJr0019btC2b04JERERmYmDlgJzkMiyIDQGAGsGV/vmC2BCkX7xZ51osATXXYhEREVHtGFg5qOjQAKx6vg9U1fJZqZTuWPV8H0SHBli8FouIiIjqxsXrDqBSJ+BwTgHyi0rh5yUm/nSSyxAdGoCRISqTZQAztBMREUmNgZWdq2tHX11BFXBvLZZaU2pynZUM4ggXM7QTERGZh4GVHdPv6KseFKk1pXh17TF4t3JB4a0Kw/XqKRT0a7GmrT0GGWB0n6prsZihnYiIyDxcY2WnKnVCvTv6qgZVgOkUCuasxSIiIiLzcMTKTpmTXb06AeJI1KJt2RgZojKMRNW3FouIiIjMw8DKTjV0p17VFAoRndsarjvJZUbPiYiIyHKcCrRTjd2pxxQKRERE0mNgZafqy65eH6ZQICIikh4DKztVV3b1uuiPs2EKBSIiIukxsLJjte3oq4sAplAgIiJqKlYNrFJTUxEbG4vAwEDIZDJs3rzZqLy4uBjx8fFo3749PDw8EBISgtWrVxvVKS0tRVxcHNq2bYvWrVtj3LhxyMvLM6pz6dIlxMTEoFWrVvDz88Ps2bNx584dozopKSno06cP3Nzc0KVLF6xZs6Ypuiy56NAA7EsYjvhhnc2q//IjnZhCgYiIqIlYNbAqKSlB7969sXLlSpPls2bNQmJiItauXYtTp05hxowZiI+Px9atWw11Zs6ciW3btmHjxo3Yu3cvrl27hqeeespQXllZiZiYGJSXl+PAgQP46quvsGbNGsyfP99QJycnBzExMRg2bBgyMjIwY8YMvPLKK9i1a1fTdV5CTnIZHunSzqy6I0NUTdwaIiKilksmCIKpHJPNTiaTYdOmTRg7dqzhWmhoKJ599lnMmzfPcK1v374YPXo0/vrXv0Kj0aBdu3ZYt24dnn76aQDA6dOn0aNHD6SlpWHgwIH44Ycf8Nhjj+HatWvw9/cHAKxevRoJCQm4fv06XF1dkZCQgB07diArK8vwPuPHj0dhYSESExNNtresrAxlZWWG51qtFkFBQdBoNFAoFFL+0ZilUidg0NLkeo+n2ZcwnNOAREREd2m1WiiVSsm+v216jdXDDz+MrVu34urVqxAEAT/99BN+/fVXjBo1CgCQnp6OiooKREZGGl7TvXt3dOjQAWlpaQCAtLQ09OzZ0xBUAUBUVBS0Wi1OnjxpqFP1Hvo6+nuYsnjxYiiVSsMjKChIsn43RNXF7KYIAB7vHcCgioiIqAnZdGD1ySefICQkBO3bt4erqyuio6OxcuVKDBkyBACgVqvh6uoKb29vo9f5+/tDrVYb6lQNqvTl+rK66mi1Wty+fdtk2+bOnQuNRmN4XL58udH9bazo0ABMHRJca/nnqTlGx9kQERGRtGw68/onn3yCgwcPYuvWrejYsSNSU1MRFxeHwMDAGiNMzc3NzQ1ubm5WbUN1lToBW3+pO3CqfpwNERERScdmA6vbt2/jz3/+MzZt2oSYmBgAQK9evZCRkYF//OMfiIyMhEqlQnl5OQoLC41GrfLy8qBSiYu0VSoVDh8+bHRv/a7BqnWq7yTMy8uDQqGAh4dHU3VRcvWdH1jbcTZEREQkDZudCqyoqEBFRQXkcuMmOjk5QafTARAXsru4uGDPnj2G8jNnzuDSpUuIiIgAAERERODEiRPIz8831ElKSoJCoUBISIihTtV76Ovo72EvzD2mhsfZEBERNQ2rjlgVFxfj3Llzhuc5OTnIyMiAj48POnTogKFDh2L27Nnw8PBAx44dsXfvXvznP//BBx98AABQKpWYPHkyZs2aBR8fHygUCkyfPh0REREYOHAgAGDUqFEICQnBCy+8gGXLlkGtVuOdd95BXFycYSrv1VdfxYoVK/D222/j5ZdfRnJyMr799lvs2LGj+f9QGsHcY2p4nA0REVHTsGq6hZSUFAwbNqzG9UmTJmHNmjVQq9WYO3cufvzxRxQUFKBjx46YOnUqZs6cCZlMXCNUWlqKN998E+vXr0dZWRmioqLw6aefGqb5AODixYuYNm0aUlJS4OnpiUmTJmHJkiVwdnY2asvMmTORnZ2N9u3bY968eXjxxRfN7ovU2zUbgikXiIiILCP197fN5LGyd7YQWAFAYlYupq09BgBGwZU+jFr1fB9mXiciIrqrReWxIsvVdn6gSunOoIqIiKiJ2eyuQGq46NAAjAxR4XBOAfKLSuHn5Y4BwT6c/iMiImpiDKwclJNcxpQKREREzYxTgUREREQSYWBFREREJBEGVkREREQSYWBFREREJBEGVkREREQSYWBFREREJBEGVkREREQSYWBFREREJBEGVkREREQSYWBFREREJBEeaeOAKnUCzwkkIiKyAgZWDiYxKxeLtmUjV1NquBagdMeC2BBEhwZYsWVERESOj1OBDiQxKxfT1h4zCqoAQK0pxbS1x5CYlWullhEREbUMDKwcRKVOwKJt2RBMlOmvLdqWjUqdqRpEREQkBQZWDuJwTkGNkaqqBAC5mlIczilovkYRERG1MAysHER+Ue1BVUPqERERkeUYWDkIPy93SesRERGR5RhYOYgBwT4IULqjtqQKMoi7AwcE+zRns4iIiFoUBlYOwkkuw4LYEACoEVzpny+IDWE+KyIioibEwMqBRIcGYNXzfaBSGk/3qZTuWPV8H+axIiIiamJMEOpgokMDMDJExczrREREVsDAygE5yWWI6NzW2s0gIiJqcTgVSERERCQRBlZEREREEmFgRURERCQRBlZEREREEmFgRURERCQRBlZEREREEmFgRURERCQRBlZEREREEmFgRURERCQRBlZEREREEmFgZet0lUD2+8DuocBttbVbQ0RERHXgWYG27tZlIONt8febAsRfI38G/AZZr01ERERkEkesbF3rTkCn542v7R4MrJMBpz+0SpOIiIjINAZW9uDh/wLjK4Cu04yvH5slBlipTwJ3bqNSJyDt/A1sybiKtPM3UKkTrNNeIiKiFsqqgVVqaipiY2MRGBgImUyGzZs316hz6tQpPP7441AqlfD09ET//v1x6dIlQ3lpaSni4uLQtm1btG7dGuPGjUNeXp7RPS5duoSYmBi0atUKfn5+mD17Nu7cuWNUJyUlBX369IGbmxu6dOmCNWvWNEWXG07uDPT/FHhOACLWGpdd2Qx82wpFX3vj7a82440NGZjwxUEMWpqMxKxcqzSXiIioJbJqYFVSUoLevXtj5cqVJsvPnz+PQYMGoXv37khJSUFmZibmzZsHd3d3Q52ZM2di27Zt2LhxI/bu3Ytr167hqaeeMpRXVlYiJiYG5eXlOHDgAL766iusWbMG8+fPN9TJyclBTEwMhg0bhoyMDMyYMQOvvPIKdu3a1XSdb4zgiWKANSYTkN37CL2dtPi5+yu40OsxDPM6ArWmFNPWHmNwRURE1ExkgiDYxHyRTCbDpk2bMHbsWMO18ePHw8XFBf/9739Nvkaj0aBdu3ZYt24dnn76aQDA6dOn0aNHD6SlpWHgwIH44Ycf8Nhjj+HatWvw9/cHAKxevRoJCQm4fv06XF1dkZCQgB07diArK8vovQsLC5GYmGhW+7VaLZRKJTQaDRQKRQP/FCxXqRMQtWwr/urzDga2zqpRvjLvGawtnYJ9CSPgJJc1W7uIiIjsgdTf3za7xkqn02HHjh144IEHEBUVBT8/P4SHhxtNF6anp6OiogKRkZGGa927d0eHDh2QlpYGAEhLS0PPnj0NQRUAREVFQavV4uTJk4Y6Ve+hr6O/hyllZWXQarVGD2s4nFOAc4XOGP/bEnTK3Iblec8alcf5f4u0jiNRsuNhoFxjlTYSERG1FDYbWOXn56O4uBhLlixBdHQ0fvzxRzz55JN46qmnsHfvXgCAWq2Gq6srvL29jV7r7+8PtVptqFM1qNKX68vqqqPVanH79m2T7Vu8eDGUSqXhERQU1Og+N0R+UWmVZzJ8kPcCOmVux4s5C4zqKYoOAt95i4vdC080axuJiIhaCpsNrHQ6HQDgiSeewMyZMxEWFoY5c+bgsccew+rVq63cOmDu3LnQaDSGx+XLl63SDj8vd5PXU4r6o1Pmdgw+/S/8fkdpXLizlxhg5aw1+VoiIiJqGJsNrHx9feHs7IyQkBCj6z169DDsClSpVCgvL0dhYaFRnby8PKhUKkOd6rsE9c/rq6NQKODh4WGyfW5ublAoFEYPaxgQ7IMApTtqWz11pVyF2Kv/Q+XTJUDQU8aFaS+IAdbhPwG6O6ZvQERERGaz2cDK1dUV/fv3x5kzZ4yu//rrr+jYsSMAoG/fvnBxccGePXsM5WfOnMGlS5cQEREBAIiIiMCJEyeQn59vqJOUlASFQmEI2iIiIozuoa+jv4ctc5LLsCBW7Ef14Er/fEFsCJxcWwGD/yfuJuxTLbHouc+BDS7A9hDgdh6IiIioYawaWBUXFyMjIwMZGRkAxLQHGRkZhhGp2bNn45tvvsEXX3yBc+fOYcWKFdi2bRtee+01AIBSqcTkyZMxa9Ys/PTTT0hPT8dLL72EiIgIDBw4EAAwatQohISE4IUXXsAvv/yCXbt24Z133kFcXBzc3NwAAK+++ip+++03vP322zh9+jQ+/fRTfPvtt5g5c2bz/6E0QHRoAFY93wcqpfG0oErpjlXP90F0aIDxC7rPEAOskfuMr2tPAZtU4ijW9QNN22giIiJHJFjRTz/9JACo8Zg0aZKhzr///W+hS5cugru7u9C7d29h8+bNRve4ffu28Nprrwlt2rQRWrVqJTz55JNCbm6uUZ0LFy4Io0ePFjw8PARfX1/hzTffFCoqKmq0JSwsTHB1dRXuv/9+4csvv7SoLxqNRgAgaDQai14npTuVOuHAud+FzcevCAfO/S7cqdSZ98JbuYKwrbsgfI2aj1MfNW2jiYiIrEjq72+byWNl76yVx0pSujvA0ThxarC6oHHAw2sBJ9OL5YmIiOxRi8ljRVYgdwYGfCZOEw78yrjs8v+AbzyA7/2B4gtWaR4REZGtY2BFpt3/RzHAGp1hfL00H9gaLK7DuvaDVZpGRERkqxhY2alKnYC08zewJeMq0s7fQKWuiWZ02/QWA6ynbwLtBhmXpYwRA6zM+QBnlImIiGznrEB715xrrHZm5uKdLVkoKCk3XAtQumNBbEjNHYBSE3TAL+8A2Ytrlvk9CgzdArjY6RozIiJqcWx2jdX58+cxfPhwqW5HtVi8MxuvrTtmFFQBQK6mFNPWHkNiVm7TNkAmB8L+Lo5iDdlqXJafAmxUAuudgMKaB0ITERE5OskCq+LiYsMZftQ0dmZew2epObWWCwAWbctuumnB6trHigFW7DnA1adKQ3TAzp7iNOGFdc3TFiIiIhvgbG7F5cuX11l+9erVRjeGalepE/DOlvpHgXI1pTicU4CIzm2boVV3eXUGnr4B3LkNHJgAXNlyr+zARPHRdRrQd7m485CIiMhBmf0tN2PGDAQEBMDV1dVkeXl5ucnrJI2Dv91AQUmFWXXzi0qbuDW1cPYAhmwWF7Kf/hA4/ua9srOrxIcyFBixB3D3s04biYiImpDZgVXHjh2xdOlSPPPMMybLMzIy0LdvX8kaRvckZuUi4X+ZZtf387JyEk+ZDOgxS3zkpwK7h94r02SJubAAYOQBoJ3tn8dIRERkLrPXWPXt2xfp6em1lstkMnCDofR2Zubi1bXHoLl9x6z6CndnDAj2qb9ic/EbIq7DevIa4PWAcVnSw+I6rDMrrNM2IiIiiZkdWL377rv4wx/+UGt5SEgIcnJqX1hNltuZeQ3x649Z9Jpxfe6Dk1zWRC1qBI8AIPYMML4c6DzZuCx9uhhg7XsWqCyzTvuIiIgkwDxWEpE6D0ZiljhSZan1UwY278L1xvhtDXDwpZrX3VVA1EHAs2OzN4mIiFoWm81jRdKp1AlYtC3b4tcFKN1taxqwPve/ePfYnOPG10vVwJZOd4/N2WWNlhERETUIAysbdDinALkay3b2yQAsiA2xzWnA+rQJu3tsTgHgW20xe0r03WNzFvLYHCIisnkMrGyQpekSApTuWPV8n6Y/zqapubYBRh0AJlQCPd42LstaBKyXA3tGABVF1mkfERFRPRhY2SBL0iXE9lJhX8Jw+w+qqpLJgYeW3j02Z7NxWV4ysFEBbHAFNJZPlxIRETUlBlY2aECwDwKU7jBnUm/fuRtN3h6rav/E3WNzzgIu3veu6yqAHQ+K04QXv7Fa84iIiKoye1dgfUfa6L3++uuNapC9suauwJmRXfFG5AP1V3QEd26JaRmuba9Z1vE5IOIrHptDRERmk/r72+zAKjg4uP6byWT47bffGt0oeyT1BwMA7247if/bf6Heet4eLkifN9I+F643lCAAp/4BZLxtuvyJC0zXQERE9bJaYEV1a4rAKu38DUz44qBZde0qf5XU8lKAPcNMlw3+HxD0VLM2h4iI7AfzWLUgfTu2MWudFQDszlY3aVtsmv+j4jqsx07XLPt5nLgO6+DLzd4sIiJqecwOrJKTkxESEgKtVlujTKPR4MEHH0RqaqqkjWvp0i/ehLnDif/efwGJWblN2h6bp+gmBljP3hZTN1T125digLXBVVynRURE1ATMDqw++ugjTJkyxeQwmVKpxJ/+9Cd8+OGHkjaupbM0n9Wc709g/9nfUalr4bO7Tu5istHnBKDra8ZlugrgW08xyCrMsk77iIjIYZkdWP3yyy+Ijo6utXzUqFFIT0+XpFEksiSfFQAU3qrAxH8fwqClyRy90uu/UgywhprYRbizpxhgnf2s+dtFREQOyezAKi8vDy4uLrWWOzs74/r165I0ikSW5LOqSq0pxbS1x/Dx7rPYknEVaedvcBTrvhgxwBp7pWbZkVfFACt5JI/NISKiRjE74c99992HrKwsdOnSxWR5ZmYmAgIcKPu3DXCSy7AgNgTTzMxnpacPDT7c/avhWoDSHQtiQ4wytFfqBBzOKUB+USn8vMQDnB0+ZUOr+8QAS1cJJD4EFJ64V6beLR6bAwDjbgBudnSgNRER2QSz0y1Mnz4dKSkpOHLkCNzdjaeobt++jQEDBmDYsGFmJxJ1NE2RbkEvMSsXC7dmQ621bM1VVfpwSX+mYGJWLhZtyzY67FmlcMeEAR3QybdVywm0ACDrb0DmO6bLIn8G/AY1b3uIiKjZWC2PVV5eHvr06QMnJyfEx8ejW7duAIDTp09j5cqVqKysxLFjx+Dv79/oRtmjpgysAHF0aUXyWXy4+2yD7yEDoFK6Y15MD8StO17vjkNTo1y2oklG266nAUkPmy7ruRDouaBx9yciIptj1QShFy9exLRp07Br1y7oXyaTyRAVFYWVK1ealZ3dUTV1YKVnaqTJUj6eLigoqai3XvVRLlth6s9A0iCwvBD4ro3pMkU3YEwWj80hInIQNpF5/ebNmzh37hwEQUDXrl3Rpk0tX0ItSHMFVoA4WnPwtxuI+/oYCm/XHyA1hn6Ua1/CcLNHhJpy7VZiVi6mrT1WY7StSYJAQQD2PgZc22m6/IlLgGeQNO9FRERWYROBFdXUnIGVnj7IAGB2ItGGMvfInKYcTarUCRi0NLnW0bqGBIFmO/9v4NArpsuGbAbaPyHt+xERUbOQ+vvb7PmMp54y77y177//vsGNIctEhwZg1fN9zJ4alAHw8XTFjZJyi9/LnGSltY0m6dM/NHY06XBOQZ39FADkakpxOKdA+nMTO08WH5pTwI4Q47LUsXfrTAHCP5f2fYmIyK6YHVgplcqmbAc1UHRoAEaGqAxTbxd+L8GHu89CBuNRLP34zXtPhOK9HdlQa0otGuWqLVmpftpPrbmN93acMnlP4e77L9qWjZEhqgaPJpmbid7SjPUWUfYQ0zXcuQ187wfcKb5Xdv4L8eHkIaZrcPZounYQEZFNMjuw+vLLL5uyHdQITnKZ0QhNN5VXzVQKVabj5HJg2tpjNYIvU/TTawOCa+Z0siQNhBSjSeZmorc0Y32DOHsAzxSJvz/8J+BclZGqytvAt63E38ecBJQhNV9PREQOiWusJGKNNVZ1qW8BuTm7C2tbEC6mfjhnlIDUXJMf6YR5sQ9a/Dr9+w5amlzraFuTrrEyx5WtQGota60GfAF0qWWNFhERWQ0Xr9soWwuszFE1+LrwewnWH74EtbbMUO7dygUvPRyM+OFdDIGKOEp10qieJXw8XXDkLyMbHPjUtmDfplJD3LoCbK5lt2BAFPDoD4CsBSReJSKyAwysbJQ9BlbV6ZOQfrn/glEaB/2uPgAmF6dbytwdhrVp8jxWUtHdAXb2ArSnapYFRAODvwOcPZu/XUREZMDAykY5QmBVV44oAeIIVuGtxufN+nh8GJ4Iu69R97C7cw5PvAucMJG53dkTiD4GKB5o/jYREREDK1tl74FVfTmipDQvpgd8vdzsIyCSmuYUkNhXXOBe3eD/AUHmpTUhIiJpSP39LZegTQ2WmpqK2NhYBAYGQiaTYfPmzbXWffXVVyGTyfDRRx8ZXS8oKMDEiROhUCjg7e2NyZMno7i42KhOZmYmBg8eDHd3dwQFBWHZsmU17r9x40Z0794d7u7u6NmzJ3burCXbtoOqL0eUVOQy4L0dp/DGhgxM+OIg+r6XhI93n0WlroXE98oewLO3gD8UAapRxmU/jwPWyYD0WYCgs077iIioUawaWJWUlKB3795YuXJlnfU2bdqEgwcPIjAwsEbZxIkTcfLkSSQlJWH79u1ITU3F1KlTDeVarRajRo1Cx44dkZ6ejvfffx8LFy7E55/f2x5/4MABTJgwAZMnT8bx48cxduxYjB07FllZWdJ11sY1ae6nKqrHT4W3K/Dh7l/Re9GPeHfbSaSdv9EygiyX1sDwXcAEHdDrPeOyMx8C652AxP5AWYF12kdERA1iM1OBMpkMmzZtwtixY42uX716FeHh4di1axdiYmIwY8YMzJgxAwBw6tQphISE4MiRI+jXrx8AIDExEWPGjMGVK1cQGBiIVatW4S9/+QvUajVcXV0BAHPmzMHmzZtx+vRpAMCzzz6LkpISbN++3fC+AwcORFhYGFavXm1W++19KjDt/A1M+OJgk91fLqsZVNXGx9MVY8MCMTJE1bKmCnOTgJ9GmS6LPgr49G3e9hARtQAONRVYH51OhxdeeAGzZ8/Ggw/WzH2UlpYGb29vQ1AFAJGRkZDL5Th06JChzpAhQwxBFQBERUXhzJkzuHnzpqFOZGSk0b2joqKQlpZWa9vKysqg1WqNHvZsQLAPApTuqC2EkQFo5epk0T19PF3w4bNhmBfTw+ygCgAKSsrxf/svYMIXBzFoaTISs3Itel+7FTBSzOr+xEWgVXvjssR+4jThuX9Zp21ERGQWmw6sli5dCmdnZ7z++usmy9VqNfz8/IyuOTs7w8fHB2q12lDH39/fqI7+eX119OWmLF68GEql0vAICqolb5GdcJLLDCkVqgdX+ud/GtLZ7PvJAPz9yZ548qH74Ovl1uB25d49Z7DFBFcA4NkBGHsZeLYU6PiccdnhKWKAlTYJqLT8zEciImpaNhtYpaen4+OPP8aaNWsgs8FkinPnzoVGozE8Ll++bO0mNZr+UGeV0vhIGJXSHaue74P44V0QoKz/uJiAu/X1OaUae8SMAOCtjZnYdOxKy1mDBQBObsAjX4ujWP0/NS7L+Q/wjRuw5X7g1lXrtI+IiGow+6zA5vbzzz8jPz8fHTp0MFyrrKzEm2++iY8++ggXLlyASqVCfn6+0evu3LmDgoICqFQqAIBKpUJeXp5RHf3z+uroy01xc3ODm1vDR2JsVfVDnaunRFgQG2Iy87nezMiuiB/e1WhdlH6asTG7DovL7mDmt78AAFQKdyx83MaSgTa1rtPEx++HgR/D710vyQE23502HPET4P+oVZpHREQimx2xeuGFF5CZmYmMjAzDIzAwELNnz8auXbsAABERESgsLER6errhdcnJydDpdAgPDzfUSU1NRUXFvcSWSUlJ6NatG9q0aWOos2fPHqP3T0pKQkRERFN30ybpD3V+Iuw+RHRuaxQk1TaqFaB0x+rn++CNyAdqLDbXTzNKNe6o1pbi1ZY2PajnO0AcwXrqOtAmzLhszzBxmjB7KWAbe1KIiFocq+4KLC4uxrlz5wAADz30ED744AMMGzYMPj4+RiNVep06dTLaFQgAo0ePRl5eHlavXo2Kigq89NJL6NevH9atWwcA0Gg06NatG0aNGoWEhARkZWXh5ZdfxocffmhIy3DgwAEMHToUS5YsQUxMDDZs2IC///3vOHbsGEJDQ83qi73vCrRUQzKfJ2blYs73JyTJ3g4AbVq54Og7DT930CHoKoFjM4FfP6lZFhgDDPoWcG7V/O0iIrITDpV5PSUlBcOGDatxfdKkSVizZk2N66YCq4KCAsTHx2Pbtm2Qy+UYN24cli9fjtatWxvqZGZmIi4uDkeOHIGvry+mT5+OhIQEo3tv3LgR77zzDi5cuICuXbti2bJlGDNmjNl9aWmBVUNV6gQkfJeJ745dkeR+X78Sjke6+EpyL7t38Rtg//ia110UQNRRQNG1+dtERGTjHCqwciQMrMxXfkeHbu/80OjDnAEgblhnDOrSzn7ODGwOmmzgh4cAnYldg4M3AUFjm71JRES2ioGVjWJgZT4pk5F6ujqhpLzS8DxA6Y55MSFo4+nKYKuiCPj5KUC9u2ZZj9lA2BJAZrPLLImImgUDKxvFwMp8WzKu4o0NGc32fi02k7ueIABZ7wInFtYsaxsODPsBcG3T7M0iIrIFDKxsFAMr8zX18Tl1CVC6Y0FsC0vVUNW1XUBKtOmy6GOAz0PN2x4iIitrUUfakGOq7/icptQiM7lXFRh199icC4BHtUPNE/uI6RrOf2mVphEROQIGVtTsqh6f0xBKj8bltRUAzP3+RMvJ4G6KZ0fgyavisTkdnjUuO/SyGGAdfBnQSZMag4iopeBUoEQ4FWi5xKxcLNyaDbW29ozsMgD+Cjf885kw/F5cBj8vd+h0Aib++1Cj339mZFe8EflAo+/jMM6sANKn17zeugswMhXwaKHTp0Tk0DgVSA4jOjQA++cMx8xI0/mV9FOFCx9/EAPvbws/L3fkF4lBmErR+KnEL/dfaNmjVtV1ixenCUelGV8vPgdsChRHsfJTrdM2IiI7YbNnBVLL4CSX4Y3IB9BN5YVF27KNzhNU3V1oDgCDliYblXm3coEAMfhqaGhUeLsCh3MKENG5bcM74Ih8B4oBVmk+kBwJFJ64V7Z7qPjrQ+8D3d8EbPCAdCIia+JUoEQ4Fdh4VY/J8W3tBgjAntN5+L/9F2rU1QdU3q1cGnVEzsfjw/BE2H0Nfn2LoKsE0l8Hzn5as+y+WOCRDTw2h4jsFqcCyWHpD392c5bjzW9/wcR/HzIZVAEwjFa5O8sRN6xzg9/Tz8u9/kotndwJ6L9SHMV6+GvjsqvbgG89gY1tgKLz1mkfEZENYWBFNiUxKxevrj1W54J2PQGAWlsGn1auFr+PDGJOqwHBPpY3siXr9JwYYI05Acic7l2vKAS2dRHXYV3ZarXmERFZGwMrshnld3R4a2Omxa/z8XS1KC+Wvt6C2JCWl4VdKt6hwIQ7wB80gN+jxmWpT4gBVsYcQNBZpXlERNbCwIqsplInIO38DWzJuIqPd59F+N92o7jsjsX3USk9DIvczQmTVEp3rHq+T8vNvi4lFwUQ+RMwQQeEzjcuy14KrHcCkgYB5YVWaR4RUXPj4nWJcPG6ZRKzcmvsArSUDGKQtC9hOJzkMpP3FA9l7oE2nm48lLm5XN0J7I0xXTY6A2jTu1mbQ0RUF54VaKMYWNVPv+svKVtd66J0c+nDouojT1V3FjKIsrLiHODHgWLahuoGfgXc/8fmbxMRUTUMrGwUA6u6STFCVVWLP0zZnlSWAgdeAC5/V7Os8ytA/1WAnCn1iMg6GFjZKAZW91QfNbpZUo64dccanMizqlauTvjij/0w8P62HImyR6c/Bo7NqHld0Q0YkQJ4qJq5QUTU0jGwslEMrESmRqbkMkCqk2NWc9G5Y7i+X1zUbkrkz4BfLWVERBKT+vub4+/UKFVHpy78fgsf7f61xsiUFEGVSuGGhY8/yKDKUbR7RMyHdTsPSB4OaLLvle0eLP7a5wOg+0zrtI+IqIE4YiURex+xasiib6nXTdVmZmRXxA/vyqk/R6a7AxyNB859VrOs/ZNixndnj+ZvFxE5PE4F2ih7DqxqS1NQ1+LwxKxcTFsrzbqp2nCBeguV818gzcSOQbe2QNRhoPX9zd8mInJYDKxslL0GVjszc/HaumM1rteWzgAQR7cGLU2WfKRKpXDDhAEd0MnXk6kSCCg8AezsZbps6HbgvlpyZRERWYBrrEgyOzOvIX79cZNl+kOOF23LxsgQlVGAczinQNKgavIjnRAZomIgRca8e4rrsMo1QOrjQH7qvbK9j4m/PvhnoNdfARl/bojINjCwamEsSdIpAMjVlOJwTgEiOrc1XM8valhQVX13IKf6yCyuSiByLyAIQOY84OTf7pWd/Lv4aDcYGLpNrEtEZEUMrFqQhi42rx5I+Xm5W/R6/VjCigkP8WgZajiZDOj9V/FxdTuwN/Ze2fWfge+8xd+PyRRHu4iIrICBVQvRmMXm1QOpAcE+CFC6Q60pNet+Ko5MkdTue0ycJiz+DdgVDpT9fq9Mvy4rYi0QPNE67SOiFouL1yViy4vXG7PYPKDKIcdV6QM1AEbBlezu85mRXbkInZrPndvAgYnAlU01y7r8Cei3gsfmEJFJUn9/yyVoE9m4xiw2nxcTYjIoig4NwKrn+0ClNB7NUindsfr5Pngj8gE8EXYfIjrz6BlqBs4ewJDvxVGsPh8Yl537DNjgAux40PSB0EREEuJ/4VqAhi42B4A2nq61lkWHBmBkiMrixKJETar7TPGR/zOwe8i965ps4Ht/8fcj9wPtHrZO+4jIoTGwagEsXWxeVX1BmZNcZrRjkMhm+A2+e2yOGtgzDNCevleW9Ij4a9+PgW6vW6d9ROSQOBXYAgwI9oFK0bDgqjFBGZFN8FABj50CxlcAnV8xLkt/A1gnA35+Gqhs2qOZiKhlYGDVAjjJZZgwoINFr5FBXLg+INinaRpF1NzkzkD4F+Io1sA1xmWX/wd84yFOFRZfsEbriMhBMLBqITr5tjK7rn6F1IJY0wvXieze/ZPEAGt0hvH10nxga7A4inXtB6s0jYjsGwOrFsKSKT2V0t3kGYFEDqdNbzHAevom4FttMXvKGDHAylwgZn0nIjIDA6sWYkCwD3zq2OFX1bJxvRhUUcvi6g2M2g9MqARC5hiXZb0LrJcDu4cBFVqrNI+I7AcDqxbCSS5DuJnrpQ7lFDRxa4hslEwOhC0WR7GGbDEuy08BNiqB9c5A4UmrNI+IbB8DqxakcztPs+r9dr2oiVtCZAfaPy4GWLFnAdc2964LlcDOUHGa8MJ667WPiGwSAys7U6kTkHb+BrZkXEXa+Ruo1Jm/9iM82Lx8U2m/WXZfIofm1QV4ugB4pgS473HjsgPPiQHWkThAV2md9hGRTWGCUDuSmJWLhVuzodbey7ejUrhj4ePmHXAsl5m3w+/mrTs4nFPAxJ9EVTm3AoZuEReyn/4ncHz2vbKzn4oP757A8D2AezvrtZOIrIojVnYiMSsXr649ZhRUAYBaW4pX1x5DYlZuvffILy4z+/0acwwOkUOTyYAeb4nThCNSjMsKTwDf+4mjWL8ftEbriMjKrBpYpaamIjY2FoGBgZDJZNi8ebOhrKKiAgkJCejZsyc8PT0RGBiIP/7xj7h27ZrRPQoKCjBx4kQoFAp4e3tj8uTJKC4uNqqTmZmJwYMHw93dHUFBQVi2bFmNtmzcuBHdu3eHu7s7evbsiZ07dzZJnxuiUidgzvcn6qwz9/sT9U7fFVgQWDHjOpEZ/IeKAdbYq0DrLsZlP0aIAdavK63TNiKyCqsGViUlJejduzdWrqz5D8+tW7dw7NgxzJs3D8eOHcP333+PM2fO4PHHjdc4TJw4ESdPnkRSUhK2b9+O1NRUTJ061VCu1WoxatQodOzYEenp6Xj//fexcOFCfP7554Y6Bw4cwIQJEzB58mQcP34cY8eOxdixY5GVldV0nbfAwd9uoPBWRZ11bt6qwMHfbtRZx9x0C94eLsy4TmSJVoHA42eB8eXA/S8blx2NFwOsfeOBSvP/c0NE9kkmCLaR+U4mk2HTpk0YO3ZsrXWOHDmCAQMG4OLFi+jQoQNOnTqFkJAQHDlyBP369QMAJCYmYsyYMbhy5QoCAwOxatUq/OUvf4FarYarqxhYzJkzB5s3b8bp0+KhrM8++yxKSkqwfft2w3sNHDgQYWFhWL16tcm2lJWVoazs3j+SWq0WQUFB0Gg0UCgUjf3jMPKPXWew4qdz9daLG9YZg7q0Q35RKfy8xONoqmZOTzt/AxO+qH96YmbkA3gjsmuj2kzU4p3/P+DQ5JrXPQKAUWmAZ8fmbxMR1aDVaqFUKiX7/rarNVYajQYymQze3t4AgLS0NHh7exuCKgCIjIyEXC7HoUOHDHWGDBliCKoAICoqCmfOnMHNmzcNdSIjI43eKyoqCmlpabW2ZfHixVAqlYZHUFCQVN2sQWfmDr0v9+VgwhcH8caGDEz44iAGLU02Wns1INgHAcq6p/i8W7kgfniXOusQkRk6vyxOE0YfM75+OxfY0kkcxcr90SpNI6KmYzeBVWlpKRISEjBhwgRDRKlWq+Hn52dUz9nZGT4+PlCr1YY6/v7+RnX0z+uroy83Ze7cudBoNIbH5cuXG9fBOhTeLjer3q0KndFztaYU06osbHeSy7AgNgR17Q1c8lRPng9IJCWfh+4em1MAtB1oXPZTlBhgnVjEY3OIHIRdBFYVFRV45plnIAgCVq1aZe3mAADc3NygUCiMHk3lelHD1mXo/5letC3bsLA9OjQAq57vU2PkKkDpjtU8H5Co6bi2AaLSxGNzerxlXHZioXhszp5IoIIJeonsmc3nsdIHVRcvXkRycrJRAKNSqZCfn29U/86dOygoKIBKpTLUycvLM6qjf15fHX25tXm6NfxjEgDkakqN8lJFhwZgZIgKh3MKkF9UCt/WboAA/F5ShrTzN2qszSIiCcnkwEPvi4/Lm4Cfn7pXlrcH2KgA5K7A6AxA2cNqzSSihrHpESt9UHX27Fns3r0bbdsaJ6yMiIhAYWEh0tPTDdeSk5Oh0+kQHh5uqJOamoqKinu76pKSktCtWze0adPGUGfPnj1G905KSkJERERTdc0i4x5q3+h7VM9L5SSXIaJzW7g5y/HWxl8w8d+Hal2bRURNJOhJcZrwsV8Blyqj3rpyYEeIOE148VvrtY+ILGbVwKq4uBgZGRnIyMgAAOTk5CAjIwOXLl1CRUUFnn76aRw9ehRff/01KisroVaroVarUV4urjnq0aMHoqOjMWXKFBw+fBj79+9HfHw8xo8fj8DAQADAc889B1dXV0yePBknT57EN998g48//hizZs0ytOONN95AYmIi/vnPf+L06dNYuHAhjh49ivj4+Gb/MzHl4a6+aOXq1Kh7+LZ2q3EtMSsX09YeQ66mWtLRamuzqmvMsTpEZIKiK/AHjXhsTuBjxmX7nxUDrKOv89gcIjtg1XQLKSkpGDZsWI3rkyZNwsKFCxEcHGzydT/99BMeffRRAGKC0Pj4eGzbtg1yuRzjxo3D8uXL0bp1a0P9zMxMxMXF4ciRI/D19cX06dORkJBgdM+NGzfinXfewYULF9C1a1csW7YMY8aMMbsvUm/XrE6feb2hvp4cjke6+hqeV+oEDFqaXCOo0pMBUCndsS9huNG0YGJWLhZtyzZ6XYDSHQtixWN1KnWCYYrRVMoHIjKDIACnlgEZc2qWtQkDhiUB7r41y4jIYlJ/f9tMHit719SBFSAGNQu2ZCGv6N4uQYW7E7Sl9f8v9uPxYXgi7D7Dc3NzWq2fMtCwNks/wlX9B0YfNk0dEoytv+TWGnQRUQPk/QTsGW66bNQhwHdA87aHyMFI/f1t84vX6Z7qi879vNyh0wmY+O9D9b62+hE15p4FqK9XqROwaFt2jaAKuLf78LPUnBpl+mnFVdxxSNQw/sPEdVi3rgK7hwDFv90r+1FcS4r+q4Cur1qnfURkhIGVndEvOter1AkIULpDrSk1GfTop/SqH1Fj7lmA+nqHcwpqnTasi3C3DYu2ZWNkiMpoWpDThkQWaHUf8Ph5oLIcODwFyPnPvbIj08RHx+eAgV8CTuYdX0VE0mNgZef0ST+nrT0GGWAUXOlDlAWxITUCFn0WdnMDMnNHuEypmvJhQLAPDucUIClbjc0Z11BQcm9ak9OGRGZwcgUivhIf574ADt87GxUX14mPVkHAyP2AZ9OdCEFEptl0ugUyjz7pp6pa0k+V0r3WKTh9QAagRiZ2UwGZuSNcddmdrcagpcmY8MVB/N/+C0ZBFVD/bsTG4E5Gckhdptw9Nueo8fVbl4EtHcTdhOrd1mkbUQvFxesSaY7F6/VpyNRafbv8qt570NLkWke4pFLbbsTGMLePRHav7Abw02ig4EjNsl5/BR78MyDjdDtRVdwVaKNsIbBqKHMDMv2uQAAWB1dyGWDJIFHV3YiNUd9ORksX1XNdGNkFQQccnw2c/qBmmWoUMPh/gEvrmmVELRADKxtlz4GVJUyN/jSF6ukhGqKhubpqI+XIFwM0ajaX/gfse7rmdScPYPRxQNGt+dtEZEOYboGsqmrKB7W2FO9tP4mCkopa68tlwKSIjvjywEWL3keKNV317WQ0dY5ibWob+WpIOglrTU0ymGuhOowT12FpzwCJfYE7JeL1ytvA9u7i7wdtBDqYCL6IyGIMrMhiVVM+eLjI65weXDHhIbTxdDM7sKotPURDWJqrqzb15fCqLZ2EKVIGaJZwtHVmDBIbQNENeKYYqCgG9v0ByE28V7bvD+Kv3WYAff4pHhRNRA3Cvz3UKLXtSAxQumP1830wplegIbVDfV97daWHaAhLc3XVxpKRr7qYk2R10bZsyXcsNvRMSFuVmJVr2F3Kg8MbwKU1MOwHYIIO6P1347IzHwHrnYDEfuJCeCKyGAMrarTo0ADsSxiO9VMG4uPxYVg/ZSD2JQw3jITUldqhqrrSQzREfQGdDGIAWN/omFQjX1IFaJawVjDXVBwtSLQqmQx4cK44TTi8WkqGgnTgf75iuoYbR02/nohM4lQgSaJ6Rvjq9CNb1aejfDxd8GTYfYgMUUk+ndPQ5KnVSTXyJVWAZgkp15lZm7lTsl5uLvi9pIxThJZQjbh7bM4V4MdHgFuX7pXt6i/+OuBzMW8WEdWJgRU1G1NnHTb1F19tAZ3KgvVFlmapr425AZpvazez6pnDGsFcUzE3SKx6dqY9ryOzilbtgbEXxWNzDk0GLqy9V3Z4qvjo9DwQ/m8em0NUC6ZbkEhLSbdgrxq72Lm2HF6W5MMyN8mqSuGGhY8/2OBgoGpffy8qw3s7TtX7GqnyhjWlLRlX8caGDIte09B8ZVTF2c+AIyYOePbsBIzcJ55hSGTHmMfKRjGwcnxS7KwzJ8lqY4IBU22sKzlrU2S6bypp529gwhcHLX6dPfXRpt04AuwaYLps+B5ANbx520MkEQZWNoqBVcsgxTb/xKxcLNyaDbW29mmthgQDtaVyqOs9APsZzWnssUr2MCpnF0p/B36KAm4eq1nW++9AyBwem0N2Rervb+4KJLKAfpH+E2H3IaJz2waNgESHBuCff+hdZx1LdwjWtbBbr3pTpd6F2dTM3V1aG3tYR2YX3H2B0enA+DtAtzeMy375M7BeDqTE3EtEStTCcPE6kRX8XlJmVj1zg4H6FnYD4nTgvJge8PVys9sdc7VtRjCHlJsCbIVVE6XKnYC+H4mPi98C+5+9V3ZtJ/Bta8C5NRCdDigeaJ42EdkABlZEViBVCgc9cwMwXy+3Rp/BaG3Vd5fma8vwt531L9Bv0PxhE5FqStlmsul3fEZ8aE4BiX2AyrttulMMbL97FuHg74GgJ5u3XURWwMCKyAqkSuGgJ3WgZuuq5k3bknHVrNeYO0rY1KTcBNHcRyPVS9kDePa2eGzOz08B6qR7ZT8/Jf7a/U3goWU8NoccFn+yiaygrvVCDTnaR6os8/bInoJKKTLH20U2fZfWwPAfxWNzer5rXHb6n+KxObvCgTLLTxmo1AlIO38DWzKuIu38Dbs5NYBaDgZWRFZS2zmLDVlULnWgZk/sJaiUKiCyxtFIDSaTAT3niVndh+0yLrtxGPhfW/HYnAITOwxN4DmRjsuRAmZOBRJZkZTZ6KXIMm+PpDq6qKlJdbyQ3WbTDxglBlgll4AfHwZuV5nCTewr/hr+b6DzyyZfbrPTnzbCqhsZGsmm1gtKgIEVkZXVd86iJaxxbJAtsIegUqqAyJ6mPk3y7AA8eQWoLAMOvgRcXH+v7NBk8XH/i+LZhHIXAOafEzkyROXwP+umNGdgInUA54gBMwMrIgcjZaBmT2w9qJQqIJJ644PVOLkBj6wTH79+ChyNu1f22xrx0fp+IPJnHM51c5jDxKXWnIGJ1AFcpU7Awq2OFzBzjRUROQwpErg2FanWgjnkeroHXhOnCUdVO7Ko+Ddg832IOOSLcM8T9d7G5qY/m1hzbmSQYuNFdSuSz9Z5AkXVgNme1mAxsCIiagZSBkRSbnywKb7hYoD1VD7gbXw6wTed5+JCr8cwtd3/UFtSsuae/rT2l70UGxnM6UNTBHCJWbn4cPdZs+ruzlbb1aYFnhUoEZ4VSETmkHI6xZ4XLJtFVwkcmwH8uqJG0W5tf8RfTECp4G6Vg7ZtYcH1loyreGNDRr31Ph4fZjIxsLl9MPcAdHPP49Sf+2np6QlVSXnWqdTf31xjRUTUjKRcC+bw6+nkTkC/T4B+nyBj3yqEXXrNUBSpOILTPZ+GttITj5/9EHNiH2vWoMoWFlw3Zt2eJX2QeieqOUdw6cll4nFc1dnyGixOBRIRNTNbXgtmq8IGTUNir2t47tq/UK67NyagcCpBSvepiM4MBK5safJ22FKC1oau2zO3D+V3dEg7fwNn84rMao/UR3ABpoMqPZvK2VYFAysiIrIL0aEB+O+sl5EeocaObqehUQw2rpA6Vkw4ejwBEHRN0gZbStDa0HV75vZh4OLdmPDFQaz46Xyd7bA0Ca+5AdjoUH+z6tnapgUGVkREErP2omZHph/ti+nbDcrHUu8em7PQuNKpZeKxOT8+DJQXSvr+tpagtSEbGcxtW0FJRb11muIILgBQKdzwfHgns+5naznbuMaKiEhCtrCouUWRyYCeC8THtV1ASvS9st/TgO/aiL8ffRxoE9bot7PFBK2WrtuTsm0NScJrzmkJCx9/EAM7t7XLnG3cFSgR7gqklsrhd6ZZoLYFwVLuYCIzFF8Akh4GbpvYjj/wSzGzewPpd7TV92XfnDsULVVfH8wRP6wLHuni26i/7+b8J0T/dwowHYDZ4q5ABlYSYWBFLRFHZ+6pbwu5PXzhOpzKUiBtEnDp25plnScD/VcZjs2xRHN82Te12vpgrtpSOFjKnP+YNfW/MwysbBQDK7InUowycXTGmNS5fkhiZz4B0l+ved3rASByL+Chsuh2jvCfClN9aOvpihsl5fW+trl/jptyZJx5rIioUaT4QuChuDXZ2qJmqqbbdPFxPU2cJtQr+hXYdPfnPjIV8Bts+vXV2PrZlOYw1Ye+Hdtg6Ps/2dy6JnvK2cZdgUQtiBTnfVXqBKzZn2MzW85thS0uaiYT2kXcPTYnD1CGGpftHiKmazj1AWDGZI4j5COr3gdXZ7njnUXZzBhYEVnIXrfSS5HYMDErF4OWJuO9HafMes+WNDoj1SHL1Ezc/YCYE8D4CqDra8Zlx98E1suB1CeBO7et0z4rctizKJuJVQOr1NRUxMbGIjAwEDKZDJs3bzYqFwQB8+fPR0BAADw8PBAZGYmzZ40PbSwoKMDEiROhUCjg7e2NyZMno7i42KhOZmYmBg8eDHd3dwQFBWHZsmU12rJx40Z0794d7u7u6NmzJ3bu3Cl5f8n+6QMLezkMtKrGJjasbbSrLi1pdEbKQ5apGcmdgf4rxVGsiLXGZVc2A9+2Ar5rCxT/ZpXmWUt0aAD2JQzH+ikD8fH4MKyfMhD7EoYzqDKDVQOrkpIS9O7dGytXrjRZvmzZMixfvhyrV6/GoUOH4OnpiaioKJSW3vuHfeLEiTh58iSSkpKwfft2pKamYurUqYZyrVaLUaNGoWPHjkhPT8f777+PhQsX4vPPPzfUOXDgACZMmIDJkyfj+PHjGDt2LMaOHYusrKym6zzZrNpGpKSYRrOmxqwBqmu0y5SWOjrD/+nbueCJYoA15gQgq/L1WF4AbO0sThNe3W699jUzR5jqtAab2RUok8mwadMmjB07FoA4WhUYGIg333wTb731FgBAo9HA398fa9aswfjx43Hq1CmEhITgyJEj6NevHwAgMTERY8aMwZUrVxAYGIhVq1bhL3/5C9RqNVxdXQEAc+bMwebNm3H69GkAwLPPPouSkhJs337vL8zAgQMRFhaG1atXm9V+7gp0DLUt7J4X0wPv7ThV52hNW09XpM0dAVdn25xhb8yuNXNfC7TcXYFVMbeXg6jQAnsfB/L31iwLmQv0/puYoJTsmtTf37b5DQAgJycHarUakZGRhmtKpRLh4eFIS0sDAKSlpcHb29sQVAFAZGQk5HI5Dh06ZKgzZMgQQ1AFAFFRUThz5gxu3rxpqFP1ffR19O9jSllZGbRardGD7FtdI1KvrTte7xTYjZJyDFy8u9EjV021hqsxa4AsWSvF0Rn+T99huCiAyBTx2JwH3zEuy14srsNKGgyUa6zSPLJNNptuQa1WAwD8/Y0PYfT39zeUqdVq+Pn5GZU7OzvDx8fHqE5wcHCNe+jL2rRpA7VaXef7mLJ48WIsWrSoAT0jW2TOwm5zFJRUYNraYw0OLGofMQtBG0/XRo2AmHOMRG1rgMxdKzUvpgdefCSYgQQ5FpkM6P2e+Li6E9gbc6/s+j7gO2/x96N/Adr0skoTyXbY7IiVrZs7dy40Go3hcfnyZWs3iRqhvoXdlqpvd50ptY2Y5WpK8dq6Y5IsmG/oGiBzR7sYVJHDu2+MuA7r8d/EnYVV/dBbXIeV81/rtI1sgs2OWKlUYhbcvLw8BATc+8c+Ly8PYWFhhjr5+flGr7tz5w4KCgoMr1epVMjLyzOqo39eXx19uSlubm5wc3NrQM/I2kytf5EyLUDV3XXmJrSzdHG4fsF8Q0bGGpLYsDGjXUQOqXWwmAurshQ48Dxw+X/3ytL+KD66TAX6rRR3HlKLYbMjVsHBwVCpVNizZ4/hmlarxaFDhxAREQEAiIiIQGFhIdLT0w11kpOTodPpEB4ebqiTmpqKiooKQ52kpCR069YNbdq0MdSp+j76Ovr3IcdRW7qEC7+XSP5elgRrlo6YmZt3qjYNWQPEHW9EJji5A4O/E0ex+nxoXHbuc2CDC7C9B3A7z/TryeFYNYwuLi7GuXPnDM9zcnKQkZEBHx8fdOjQATNmzMBf//pXdO3aFcHBwZg3bx4CAwMNOwd79OiB6OhoTJkyBatXr0ZFRQXi4+Mxfvx4BAYGAgCee+45LFq0CJMnT0ZCQgKysrLw8ccf48MP7/0FeOONNzB06FD885//RExMDDZs2ICjR48apWQg+1fb2XZqTSk+3H0W3q1coLlVUe+okUxmVlJmi3I4NWTErCEjY43lCMd4EDWZ7jPEx/X9QNKge9e1p4FNd2dARu4D2j1ijdZRM7FqYHX06FEMGzbM8HzWrFkAgEmTJmHNmjV4++23UVJSgqlTp6KwsBCDBg1CYmIi3N3vfWF9/fXXiI+Px4gRIyCXyzFu3DgsX77cUK5UKvHjjz8iLi4Offv2ha+vL+bPn2+U6+rhhx/GunXr8M477+DPf/4zunbtis2bNyM0tNpxB2S3zDnbTq/6VFeN+vUEVabO0qpv+31jEmk2d3Zzezqzi8gq2j0ijmDdVgN7hgPaKicV6AOuPh8B3d+wSvOoadlMHit7xzxWts3cPEwzIx/AhiOXzJ6Wq229UdWpMXMOPa7UCRi0NLnWg0/r0tynzBORhXR3gKNx4tRgdUFPAQ9/LU4pklW0mDxWRFIyd1Snk28r7EsYjnkxPcyq38bT1eh59fVG5mZrr+s4lNq01OzmRHZH7gwM+OzusTn/MS67/D3wjQfwPz+gOMc67SNJcasCtQjmTrX5ebnDSS6Dr5d5Oz7nxfSASulhcorPnOnHRduyMTJEBSe5zLA4vProlinciUdkp4JfEB83M8X0DHpl14Gt94u/H7pDTOtAdomBFbUI+jxMtU21VV8XZW4gplJ61DoNZ8mhx/p7mFocfrOkrMZxOqpqU4lEZGfa9BJHsMoLxWNzrv98r0yfgPTBd4Be7/LYHDvDwIpaBEvzMFkaiJnS0EOPTS0OjwoN4E48Ikfk6g2MTBV3xWS+A5z8+72yk38VH35DgKHbxCN2yOZxjRW1GJbkYaprzZO503CWTD/Wh2fPETk4mUw81Pk5QQyiqspPBTYqgfVOQGGWddpHZuOuQIlwV6D9qC/1QVXm7Oir633q2umnH/XalzCcgRIR1VR0HvgxHCi7UbPs4a+BTs81f5sckNTf3wysJMLAynFZEohVp98VCNSfloGIyKQ7t4EDzwFXNtcs6/Iq0O8THpvTCAysbBQDK6pNY0a9iIiMnP4QODar5nVlKDBiT82DoaleDKxsFAMrqktjRr2IiGrITwV2DzVdNvIA0I5n3ZqLgZWNYmBFRETN7nYusPtRoOjXmmV9PwG6xTd7k+wNM68TERGRyCMAiD0DjC8HOr9iXJY+HVgnA/Y9A1Q275miLRkDKyIiInsndwHCvxDTNQxcY1x2aaN4bM73AUDJRas0ryVhYEVERORI7p8kBlijjxtfL1UDWzqJo1jXEq3StJaAgRUREZEjahMmBlhP3wR8HzYuSxktBliZC8Ws7yQZBlZERESOzNUbGLUfmFAJhCQYl2UtAtbLgT0jgIoiqzTP0TCwIiIiaglkciBsiTiKNWSzcVleMrBRAax3ATTZVmmeo2BgRURE1NK0f0IMsGLPAi7e964Ld4AdD4rThBe/sVrz7BkDKyIiopbKqwvwh5vAMyXAfbHGZfvHiwHW0emArtI67bNDDKyIiIhaOudWwNCtwAQdELbMuOzXFcAGZ2Bnb6D0unXaZ0cYWBEREZFIJgNCZovThCNSjMsKM4Hv/cRRrN8PW6N1doGBFREREdXkP1QMsMZeBVp3Ni77MVwMsM6usk7bbBgDKyIiIqpdq0Dg8XPisTn3v2hcduQ1McDaPwGoLLNK82wNAysiIiKqn9wFGPilOIoV/i/jsosbgG/cgU3tgZJL1mmfjWBgRURERJbpPFkMsKLTja/fvgps6SiOYuUmWadtVsbAioiIiBrGp48YYI27AbQdYFz20ygxwDrxXos6NoeBFRERETWOmw8QdUg8NqfHW8ZlJ+aLx+YkjwIqiq3TvmbEwIqIiIikIZMDD70vjmIN/t64TJ0EbPQCvvEANKet075mwMCKiIiIpBf0pBhgPXYGcPa6d72yFNjRQ5wmvLTReu1rIgysiIiIqOkoHgCe0QLPFAOBY4zL9j0jBljpMxzm2BwGVkRERNT0nD2BR3fcPTZniXHZmY/FY3N+6AuU3bBO+yTCwIqIiIiaj0wGhCTcPTYn2bjs5jHgf77iKNaNI9ZpXyMxsCIiIiLr8B9299icy4BnJ+OyXQPuHpvzmVWa1lAMrIiIiMi6WrUHnsgBni0Dgv9oXHbkVTHAOvA8UFlunfZZgIEVERER2QYnVyDiK3EUa8DnxmUXvga+cbNOuyzAwIqIiIhsT5cpYoAVVWWtlVs767XHTM7WbgARERFRrdr2EwMsO8ERKyIiIiKJMLAiIiIikggDKyIiIiKJMLAiIiIikohNB1aVlZWYN28egoOD4eHhgc6dO+O9996DINxbxCYIAubPn4+AgAB4eHggMjISZ8+eNbpPQUEBJk6cCIVCAW9vb0yePBnFxcVGdTIzMzF48GC4u7sjKCgIy5Yta5Y+EhERkeOw6cBq6dKlWLVqFVasWIFTp05h6dKlWLZsGT755BNDnWXLlmH58uVYvXo1Dh06BE9PT0RFRaG0tNRQZ+LEiTh58iSSkpKwfft2pKamYurUqYZyrVaLUaNGoWPHjkhPT8f777+PhQsX4vPPq+XQICIiIqqDTKg6/GNjHnvsMfj7++Pf//634dq4cePg4eGBtWvXQhAEBAYG4s0338Rbb70FANBoNPD398eaNWswfvx4nDp1CiEhIThy5Aj69esHAEhMTMSYMWNw5coVBAYGYtWqVfjLX/4CtVoNV1dXAMCcOXOwefNmnD592mTbysrKUFZWZniu1WoRFBQEjUYDhULRVH8kREREJCGtVgulUinZ97dNj1g9/PDD2LNnD3799VcAwC+//IJ9+/Zh9OjRAICcnByo1WpERkYaXqNUKhEeHo60tDQAQFpaGry9vQ1BFQBERkZCLpfj0KFDhjpDhgwxBFUAEBUVhTNnzuDmzZsm27Z48WIolUrDIygoSNrOExERkd2x6QShc+bMgVarRffu3eHk5ITKykr87W9/w8SJEwEAarUaAODv72/0On9/f0OZWq2Gn5+fUbmzszN8fHyM6gQHB9e4h76sTZs2Ndo2d+5czJo1y/BcP2JFRERELZdNB1bffvstvv76a6xbtw4PPvggMjIyMGPGDAQGBmLSpElWbZubmxvc3Gz/zCIiIiJqPjYdWM2ePRtz5szB+PHjAQA9e/bExYsXsXjxYkyaNAkqlQoAkJeXh4CAAMPr8vLyEBYWBgBQqVTIz883uu+dO3dQUFBgeL1KpUJeXp5RHf1zfR0iIiKi+tj0Gqtbt25BLjduopOTE3Q6HQAgODgYKpUKe/bsMZRrtVocOnQIERERAICIiAgUFhYiPT3dUCc5ORk6nQ7h4eGGOqmpqaioqDDUSUpKQrdu3UxOAxIRERGZYtOBVWxsLP72t79hx44duHDhAjZt2oQPPvgATz75JABAJpNhxowZ+Otf/4qtW7fixIkT+OMf/4jAwECMHTsWANCjRw9ER0djypQpOHz4MPbv34/4+HiMHz8egYGBAIDnnnsOrq6umDx5Mk6ePIlvvvkGH3/8sdEaKiIiIqL62HS6haKiIsybNw+bNm1Cfn4+AgMDMWHCBMyfP9+wg08QBCxYsACff/45CgsLMWjQIHz66ad44IEHDPcpKChAfHw8tm3bBrlcjnHjxmH58uVo3bq1oU5mZibi4uJw5MgR+Pr6Yvr06UhISDC7rVJv1yQiIqKmJ/X3t00HVvZEo9HA29sbly9fZmBFRERkJ/S7+gsLC6FUKht9P5tevG5PioqKAIApF4iIiOxQUVGRJIEVR6wkotPpcO3aNXh5eUEmk0l+f31E3RJGxFpKX1tKPwH21RG1lH4CLaevLaWfgHFfvby8UFRUhMDAwBob5hqCI1YSkcvlaN++fZO/j0KhcPgfeL2W0teW0k+AfXVELaWfQMvpa0vpJ3Cvr1KMVOnZ9K5AIiIiInvCwIqIiIhIIgys7ISbmxsWLFjQIo7RaSl9bSn9BNhXR9RS+gm0nL62lH4CTdtXLl4nIiIikghHrIiIiIgkwsCKiIiISCIMrIiIiIgkwsCKiIiISCIMrGzMwoULIZPJjB7du3c3lJeWliIuLg5t27ZF69atMW7cOOTl5VmxxeZJTU1FbGwsAgMDIZPJsHnzZqNyQRAwf/58BAQEwMPDA5GRkTh79qxRnYKCAkycOBEKhQLe3t6YPHkyiouLm7EX5qmvry+++GKNzzg6Otqojj30dfHixejfvz+8vLzg5+eHsWPH4syZM0Z1zPl5vXTpEmJiYtCqVSv4+flh9uzZuHPnTnN2pU7m9PPRRx+t8Zm++uqrRnVsvZ8AsGrVKvTq1cuQNDEiIgI//PCDodwRPk+9+vrqKJ9pdUuWLIFMJsOMGTMM1xzpc9Uz1c9m+0wFsikLFiwQHnzwQSE3N9fwuH79uqH81VdfFYKCgoQ9e/YIR48eFQYOHCg8/PDDVmyxeXbu3Cn85S9/Eb7//nsBgLBp0yaj8iVLlghKpVLYvHmz8MsvvwiPP/64EBwcLNy+fdtQJzo6Wujdu7dw8OBB4eeffxa6dOkiTJgwoZl7Ur/6+jpp0iQhOjra6DMuKCgwqmMPfY2KihK+/PJLISsrS8jIyBDGjBkjdOjQQSguLjbUqe/n9c6dO0JoaKgQGRkpHD9+XNi5c6fg6+srzJ071xpdMsmcfg4dOlSYMmWK0Weq0WgM5fbQT0EQhK1btwo7duwQfv31V+HMmTPCn//8Z8HFxUXIysoSBMExPk+9+vrqKJ9pVYcPHxY6deok9OrVS3jjjTcM1x3pcxWE2vvZXJ8pAysbs2DBAqF3794mywoLCwUXFxdh48aNhmunTp0SAAhpaWnN1MLGqx5s6HQ6QaVSCe+//77hWmFhoeDm5iasX79eEARByM7OFgAIR44cMdT54YcfBJlMJly9erXZ2m6p2gKrJ554otbX2Gtf8/PzBQDC3r17BUEw7+d1586dglwuF9RqtaHOqlWrBIVCIZSVlTVvB8xUvZ+CIP6DXfUf8OrssZ96bdq0Ef71r3857OdZlb6vguB4n2lRUZHQtWtXISkpyahvjva51tZPQWi+z5RTgTbo7NmzCAwMxP3334+JEyfi0qVLAID09HRUVFQgMjLSULd79+7o0KED0tLSrNXcRsvJyYFarTbql1KpRHh4uKFfaWlp8Pb2Rr9+/Qx1IiMjIZfLcejQoWZvc2OlpKTAz88P3bp1w7Rp03Djxg1Dmb32VaPRAAB8fHwAmPfzmpaWhp49e8Lf399QJyoqClqtFidPnmzG1puvej/1vv76a/j6+iI0NBRz587FrVu3DGX22M/Kykps2LABJSUliIiIcNjPE6jZVz1H+kzj4uIQExNj9PkBjvf3tLZ+6jXHZ8pDmG1MeHg41qxZg27duiE3NxeLFi3C4MGDkZWVBbVaDVdXV3h7exu9xt/fH2q12joNloC+7VV/mPXP9WVqtRp+fn5G5c7OzvDx8bG7vkdHR+Opp55CcHAwzp8/jz//+c8YPXo00tLS4OTkZJd91el0mDFjBh555BGEhoYCgFk/r2q12uTnri+zNab6CQDPPfccOnbsiMDAQGRmZiIhIQFnzpzB999/D8C++nnixAlERESgtLQUrVu3xqZNmxASEoKMjAyH+zxr6yvgWJ/phg0bcOzYMRw5cqRGmSP9Pa2rn0DzfaYMrGzM6NGjDb/v1asXwsPD0bFjR3z77bfw8PCwYstIKuPHjzf8vmfPnujVqxc6d+6MlJQUjBgxwoota7i4uDhkZWVh37591m5Kk6qtn1OnTjX8vmfPnggICMCIESNw/vx5dO7cubmb2SjdunVDRkYGNBoNvvvuO0yaNAl79+61drOaRG19DQkJcZjP9PLly3jjjTeQlJQEd3d3azenyZjTz+b6TDkVaOO8vb3xwAMP4Ny5c1CpVCgvL0dhYaFRnby8PKhUKus0UAL6tlffhVK1XyqVCvn5+Ubld+7cQUFBgV33HQDuv/9++Pr64ty5cwDsr6/x8fHYvn07fvrpJ7Rv395w3ZyfV5VKZfJz15fZktr6aUp4eDgAGH2m9tJPV1dXdOnSBX379sXixYvRu3dvfPzxxw73eQK199UUe/1M09PTkZ+fjz59+sDZ2RnOzs7Yu3cvli9fDmdnZ/j7+zvE51pfPysrK2u8pqk+UwZWNq64uBjnz59HQEAA+vbtCxcXF+zZs8dQfubMGVy6dMloXYC9CQ4OhkqlMuqXVqvFoUOHDP2KiIhAYWEh0tPTDXWSk5Oh0+kMfzns1ZUrV3Djxg0EBAQAsJ++CoKA+Ph4bNq0CcnJyQgODjYqN+fnNSIiAidOnDAKJJOSkqBQKAxTMtZWXz9NycjIAACjz9TW+1kbnU6HsrIyh/k866Lvqyn2+pmOGDECJ06cQEZGhuHRr18/TJw40fB7R/hc6+unk5NTjdc02Wdq+Zp7akpvvvmmkJKSIuTk5Aj79+8XIiMjBV9fXyE/P18QBHFbbIcOHYTk5GTh6NGjQkREhBAREWHlVtevqKhIOH78uHD8+HEBgPDBBx8Ix48fFy5evCgIgphuwdvbW9iyZYuQmZkpPPHEEybTLTz00EPCoUOHhH379gldu3a1uRQEglB3X4uKioS33npLSEtLE3JycoTdu3cLffr0Ebp27SqUlpYa7mEPfZ02bZqgVCqFlJQUo+3Lt27dMtSp7+dVv7151KhRQkZGhpCYmCi0a9fOprZx19fPc+fOCe+++65w9OhRIScnR9iyZYtw//33C0OGDDHcwx76KQiCMGfOHGHv3r1CTk6OkJmZKcyZM0eQyWTCjz/+KAiCY3yeenX11ZE+U1Oq745zpM+1qqr9bM7PlIGVjXn22WeFgIAAwdXVVbjvvvuEZ599Vjh37pyh/Pbt28Jrr70mtGnTRmjVqpXw5JNPCrm5uVZssXl++uknAUCNx6RJkwRBEFMuzJs3T/D39xfc3NyEESNGCGfOnDG6x40bN4QJEyYIrVu3FhQKhfDSSy8JRUVFVuhN3erq661bt4RRo0YJ7dq1E1xcXISOHTsKU6ZMMdreKwj20VdTfQQgfPnll4Y65vy8XrhwQRg9erTg4eEh+Pr6Cm+++aZQUVHRzL2pXX39vHTpkjBkyBDBx8dHcHNzE7p06SLMnj3bKD+OINh+PwVBEF5++WWhY8eOgqurq9CuXTthxIgRhqBKEBzj89Srq6+O9JmaUj2wcqTPtaqq/WzOz1QmCIJg/vgWEREREdWGa6yIiIiIJMLAioiIiEgiDKyIiIiIJMLAioiIiEgiDKyIiIiIJMLAioiIiEgiDKyIiIiIJMLAioiIiEgiDKyIiGzAiy++iLFjx1q7GUTUSAysiMimvfjii5DJZFiyZInR9c2bN0Mmk1mpVQ134cIFyGQywwGwRORYGFgRkc1zd3fH0qVLcfPmTWs3hYioTgysiMjmRUZGQqVSYfHixbXW2bdvHwYPHgwPDw8EBQXh9ddfR0lJCQBgxYoVCA0NNdTVj3atXr3a6D3eeecdw/Nt27ahf//+cHd3h6+vL5588klD2X//+1/069cPXl5eUKlUeO6555Cfn28ov3nzJiZOnIh27drBw8MDXbt2xZdffgkACA4OBgA89NBDkMlkePTRR032R6fTYfHixQgODoaHhwd69+6N7777zoI/NSKyBgZWRGTznJyc8Pe//x2ffPIJrly5UqP8/PnziI6Oxrhx45CZmYlvvvkG+/btQ3x8PABg6NChyM7OxvXr1wEAe/fuha+vL1JSUgAAFRUVSEtLMwQ5O3bswJNPPokxY8bg+PHj2LNnDwYMGGB4v4qKCrz33nv45ZdfsHnzZly4cAEvvviioXzevHnIzs7GDz/8gFOnTmHVqlXw9fUFABw+fBgAsHv3buTm5uL777832efFixfjP//5D1avXo2TJ09i5syZeP7557F3795G/VkSURMTiIhs2KRJk4QnnnhCEARBGDhwoPDyyy8LgiAImzZtEvT/hE2ePFmYOnWq0et+/vlnQS6XC7dv3xZ0Op3Qtm1bYePGjYIgCEJYWJiwePFiQaVSCYIgCPv27RNcXFyEkpISQRAEISIiQpg4caLZbTxy5IgAQCgqKhIEQRBiY2OFl156yWTdnJwcAYBw/PjxWvtZWloqtGrVSjhw4IBRncmTJwsTJkwwu11E1Pw4YkVEdmPp0qX46quvcOrUKaPrv/zyC9asWYPWrVsbHlFRUdDpdMjJyYFMJsOQIUOQkpKCwsJCZGdn47XXXkNZWRlOnz6NvXv3on///mjVqhUAICMjAyNGjKi1Henp6YiNjUWHDh3g5eWFoUOHAgAuXboEAJg2bRo2bNiAsLAwvP322zhw4IBF/Tx37hxu3bqFkSNHGvXpP//5D86fP2/RvYioeTlbuwFEROYaMmQIoqKiMHfuXKOpt+LiYvzpT3/C66+/XuM1HTp0AAA8+uij+Pzzz/Hzzz/joYcegkKhMARbe/fuNQRHAODh4VFrG0pKShAVFYWoqCh8/fXXaNeuHS5duoSoqCiUl5cDAEaPHo2LFy9i586dSEpKwogRIxAXF4d//OMfZvWzuLgYgDgled999xmVubm5mXUPIrIOBlZEZFeWLFmCsLAwdOvWzXCtT58+yM7ORpcuXWp93dChQzFjxgxs3LjRsJbq0Ucfxe7du7F//368+eabhrq9evXCnj178NJLL9W4z+nTp3Hjxg0sWbIEQUFBAICjR4/WqNeuXTtMmjQJkyZNwuDBgzF79mz84x//gKurKwCgsrKy1raGhITAzc0Nly5dMgr4iMj2MbAiIrvSs2dPTJw4EcuXLzdcS0hIwMCBAxEfH49XXnkFnp6eyM7ORlJSElasWAFADJbatGmDdevWYfv27QDEwOqtt96CTCbDI488YrjfggULMGLECHTu3Bnjx4/HnTt3sHPnTiQkJKBDhw5wdXXFJ598gldffRVZWVl47733jNo4f/589O3bFw8++CDKysqwfft29OjRAwDg5+cHDw8PJCYmon379nB3d4dSqTR6vZeXF9566y3MnDkTOp0OgwYNgkajwf79+6FQKDBp0qQm+bMlosbjGisisjvvvvsudDqd4XmvXr2wd+9e/Prrrxg8eDAeeughzJ8/H4GBgYY6MpkMgwcPhkwmw6BBgwyvUygU6NevHzw9PQ11H330UWzcuBFbt25FWFgYhg8fbtjN165dO6xZswYbN25ESEgIlixZUmOKz9XVFXPnzkWvXr0wZMgQODk5YcOGDQAAZ2dnLF++HJ999hkCAwPxxBNPmOzje++9h3nz5mHx4sXo0aMHoqOjsWPHDkO6BiKyTTJBEARrN4KIiIjIEXDEioiIiEgiDKyIiIiIJMLAioiIiEgiDKyIiIiIJMLAioiIiEgiDKyIiIiIJMLAioiIiEgiDKyIiIiIJMLAioiIiEgiDKyIiIiIJMLAioiIiEgi/w+1ydlDBHZ9gAAAAABJRU5ErkJggg==",
|
2786 |
+
"text/plain": [
|
2787 |
+
"<Figure size 640x480 with 1 Axes>"
|
2788 |
+
]
|
2789 |
+
},
|
2790 |
+
"metadata": {},
|
2791 |
+
"output_type": "display_data"
|
2792 |
+
}
|
2793 |
+
],
|
2794 |
"source": [
|
2795 |
"def myfunc(x):\n",
|
2796 |
" return slope * x + intercept\n",
|