ibnummuhammad commited on
Commit
672c1c4
1 Parent(s): 5818f5c

Add grangers_causation_matrix()

Browse files
Files changed (1) hide show
  1. granger_causality_testing.ipynb +371 -2
granger_causality_testing.ipynb CHANGED
@@ -2,20 +2,23 @@
2
  "cells": [
3
  {
4
  "cell_type": "code",
5
- "execution_count": 23,
6
  "metadata": {},
7
  "outputs": [],
8
  "source": [
 
9
  "import pandas as pd\n",
10
  "import plotly.express as px\n",
 
11
  "from statsmodels.tsa.api import VAR\n",
12
  "from statsmodels.tsa.stattools import adfuller\n",
 
13
  "from statsmodels.tsa.stattools import kpss"
14
  ]
15
  },
16
  {
17
  "cell_type": "code",
18
- "execution_count": 2,
19
  "metadata": {},
20
  "outputs": [],
21
  "source": [
@@ -6934,6 +6937,372 @@
6934
  " print('HQIC: ', result.hqic, '\\n')"
6935
  ]
6936
  },
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6937
  {
6938
  "cell_type": "code",
6939
  "execution_count": null,
 
2
  "cells": [
3
  {
4
  "cell_type": "code",
5
+ "execution_count": 37,
6
  "metadata": {},
7
  "outputs": [],
8
  "source": [
9
+ "import numpy as np\n",
10
  "import pandas as pd\n",
11
  "import plotly.express as px\n",
12
+ "from statsmodels.stats.stattools import durbin_watson\n",
13
  "from statsmodels.tsa.api import VAR\n",
14
  "from statsmodels.tsa.stattools import adfuller\n",
15
+ "from statsmodels.tsa.stattools import grangercausalitytests\n",
16
  "from statsmodels.tsa.stattools import kpss"
17
  ]
18
  },
19
  {
20
  "cell_type": "code",
21
+ "execution_count": 30,
22
  "metadata": {},
23
  "outputs": [],
24
  "source": [
 
6937
  " print('HQIC: ', result.hqic, '\\n')"
6938
  ]
6939
  },
6940
+ {
6941
+ "cell_type": "code",
6942
+ "execution_count": 28,
6943
+ "metadata": {},
6944
+ "outputs": [
6945
+ {
6946
+ "data": {
6947
+ "text/plain": [
6948
+ " Summary of Regression Results \n",
6949
+ "==================================\n",
6950
+ "Model: VAR\n",
6951
+ "Method: OLS\n",
6952
+ "Date: Sun, 25, Feb, 2024\n",
6953
+ "Time: 21:40:09\n",
6954
+ "--------------------------------------------------------------------\n",
6955
+ "No. of Equations: 3.00000 BIC: 14.5979\n",
6956
+ "Nobs: 128.000 HQIC: 12.7724\n",
6957
+ "Log likelihood: -1144.35 FPE: 111728.\n",
6958
+ "AIC: 11.5231 Det(Omega_mle): 44477.8\n",
6959
+ "--------------------------------------------------------------------\n",
6960
+ "Results for equation apple\n",
6961
+ "==============================================================================\n",
6962
+ " coefficient std. error t-stat prob\n",
6963
+ "------------------------------------------------------------------------------\n",
6964
+ "const -0.699238 0.584786 -1.196 0.232\n",
6965
+ "L1.apple 0.014847 0.140038 0.106 0.916\n",
6966
+ "L1.walmart -0.113138 0.105005 -1.077 0.281\n",
6967
+ "L1.tesla 0.081087 0.038983 2.080 0.038\n",
6968
+ "L2.apple -0.167780 0.135627 -1.237 0.216\n",
6969
+ "L2.walmart -0.031901 0.104304 -0.306 0.760\n",
6970
+ "L2.tesla 0.109001 0.039080 2.789 0.005\n",
6971
+ "L3.apple 0.085712 0.136509 0.628 0.530\n",
6972
+ "L3.walmart 0.157405 0.102108 1.542 0.123\n",
6973
+ "L3.tesla -0.081028 0.038433 -2.108 0.035\n",
6974
+ "L4.apple -0.440097 0.112933 -3.897 0.000\n",
6975
+ "L4.walmart -0.028011 0.102538 -0.273 0.785\n",
6976
+ "L4.tesla 0.196295 0.038369 5.116 0.000\n",
6977
+ "L5.apple 0.187708 0.125176 1.500 0.134\n",
6978
+ "L5.walmart -0.059267 0.102669 -0.577 0.564\n",
6979
+ "L5.tesla -0.089774 0.042168 -2.129 0.033\n",
6980
+ "L6.apple -0.021143 0.124388 -0.170 0.865\n",
6981
+ "L6.walmart -0.236903 0.105059 -2.255 0.024\n",
6982
+ "L6.tesla 0.021333 0.040789 0.523 0.601\n",
6983
+ "L7.apple 0.034935 0.121061 0.289 0.773\n",
6984
+ "L7.walmart -0.196441 0.105540 -1.861 0.063\n",
6985
+ "L7.tesla 0.124142 0.039365 3.154 0.002\n",
6986
+ "L8.apple 0.263352 0.114911 2.292 0.022\n",
6987
+ "L8.walmart 0.124926 0.105791 1.181 0.238\n",
6988
+ "L8.tesla -0.064692 0.037117 -1.743 0.081\n",
6989
+ "L9.apple -0.161093 0.118119 -1.364 0.173\n",
6990
+ "L9.walmart 0.142378 0.105329 1.352 0.176\n",
6991
+ "L9.tesla -0.003729 0.036768 -0.101 0.919\n",
6992
+ "L10.apple 0.052834 0.118872 0.444 0.657\n",
6993
+ "L10.walmart -0.012512 0.106188 -0.118 0.906\n",
6994
+ "L10.tesla 0.014551 0.036445 0.399 0.690\n",
6995
+ "L11.apple -0.196153 0.120203 -1.632 0.103\n",
6996
+ "L11.walmart -0.189079 0.103137 -1.833 0.067\n",
6997
+ "L11.tesla 0.046769 0.033933 1.378 0.168\n",
6998
+ "L12.apple 0.281041 0.113450 2.477 0.013\n",
6999
+ "L12.walmart 0.248444 0.097517 2.548 0.011\n",
7000
+ "L12.tesla -0.131892 0.034494 -3.824 0.000\n",
7001
+ "L13.apple -0.033669 0.107860 -0.312 0.755\n",
7002
+ "L13.walmart 0.034415 0.101916 0.338 0.736\n",
7003
+ "L13.tesla -0.018055 0.036536 -0.494 0.621\n",
7004
+ "L14.apple -0.255695 0.103146 -2.479 0.013\n",
7005
+ "L14.walmart 0.139620 0.095459 1.463 0.144\n",
7006
+ "L14.tesla 0.100374 0.036446 2.754 0.006\n",
7007
+ "L15.apple 0.196757 0.104793 1.878 0.060\n",
7008
+ "L15.walmart 0.017978 0.097782 0.184 0.854\n",
7009
+ "L15.tesla -0.030502 0.036230 -0.842 0.400\n",
7010
+ "==============================================================================\n",
7011
+ "\n",
7012
+ "Results for equation walmart\n",
7013
+ "==============================================================================\n",
7014
+ " coefficient std. error t-stat prob\n",
7015
+ "------------------------------------------------------------------------------\n",
7016
+ "const -0.103331 0.633837 -0.163 0.870\n",
7017
+ "L1.apple 0.144375 0.151784 0.951 0.342\n",
7018
+ "L1.walmart -0.076127 0.113813 -0.669 0.504\n",
7019
+ "L1.tesla -0.048764 0.042252 -1.154 0.248\n",
7020
+ "L2.apple -0.125694 0.147003 -0.855 0.393\n",
7021
+ "L2.walmart -0.017047 0.113053 -0.151 0.880\n",
7022
+ "L2.tesla -0.008949 0.042358 -0.211 0.833\n",
7023
+ "L3.apple 0.162286 0.147959 1.097 0.273\n",
7024
+ "L3.walmart -0.060079 0.110672 -0.543 0.587\n",
7025
+ "L3.tesla 0.031460 0.041656 0.755 0.450\n",
7026
+ "L4.apple 0.080359 0.122405 0.657 0.512\n",
7027
+ "L4.walmart -0.068210 0.111139 -0.614 0.539\n",
7028
+ "L4.tesla 0.023108 0.041587 0.556 0.578\n",
7029
+ "L5.apple 0.025574 0.135675 0.188 0.850\n",
7030
+ "L5.walmart -0.232336 0.111281 -2.088 0.037\n",
7031
+ "L5.tesla 0.020971 0.045705 0.459 0.646\n",
7032
+ "L6.apple -0.201452 0.134822 -1.494 0.135\n",
7033
+ "L6.walmart -0.134846 0.113871 -1.184 0.236\n",
7034
+ "L6.tesla 0.068019 0.044210 1.539 0.124\n",
7035
+ "L7.apple 0.186968 0.131215 1.425 0.154\n",
7036
+ "L7.walmart -0.110714 0.114393 -0.968 0.333\n",
7037
+ "L7.tesla -0.016329 0.042667 -0.383 0.702\n",
7038
+ "L8.apple 0.175006 0.124550 1.405 0.160\n",
7039
+ "L8.walmart -0.016260 0.114665 -0.142 0.887\n",
7040
+ "L8.tesla -0.072481 0.040230 -1.802 0.072\n",
7041
+ "L9.apple 0.198956 0.128027 1.554 0.120\n",
7042
+ "L9.walmart -0.084669 0.114164 -0.742 0.458\n",
7043
+ "L9.tesla -0.004090 0.039852 -0.103 0.918\n",
7044
+ "L10.apple -0.091041 0.128843 -0.707 0.480\n",
7045
+ "L10.walmart 0.052878 0.115095 0.459 0.646\n",
7046
+ "L10.tesla -0.003499 0.039502 -0.089 0.929\n",
7047
+ "L11.apple -0.212327 0.130285 -1.630 0.103\n",
7048
+ "L11.walmart -0.065408 0.111788 -0.585 0.558\n",
7049
+ "L11.tesla 0.070514 0.036780 1.917 0.055\n",
7050
+ "L12.apple 0.341238 0.122966 2.775 0.006\n",
7051
+ "L12.walmart -0.128880 0.105697 -1.219 0.223\n",
7052
+ "L12.tesla -0.035130 0.037387 -0.940 0.347\n",
7053
+ "L13.apple -0.009063 0.116907 -0.078 0.938\n",
7054
+ "L13.walmart 0.138496 0.110464 1.254 0.210\n",
7055
+ "L13.tesla -0.016126 0.039601 -0.407 0.684\n",
7056
+ "L14.apple 0.050583 0.111798 0.452 0.651\n",
7057
+ "L14.walmart 0.123218 0.103466 1.191 0.234\n",
7058
+ "L14.tesla 0.005768 0.039503 0.146 0.884\n",
7059
+ "L15.apple 0.153644 0.113583 1.353 0.176\n",
7060
+ "L15.walmart -0.039947 0.105984 -0.377 0.706\n",
7061
+ "L15.tesla -0.054155 0.039269 -1.379 0.168\n",
7062
+ "==============================================================================\n",
7063
+ "\n",
7064
+ "Results for equation tesla\n",
7065
+ "==============================================================================\n",
7066
+ " coefficient std. error t-stat prob\n",
7067
+ "------------------------------------------------------------------------------\n",
7068
+ "const -2.063049 1.878392 -1.098 0.272\n",
7069
+ "L1.apple -0.171895 0.449815 -0.382 0.702\n",
7070
+ "L1.walmart -0.105253 0.337288 -0.312 0.755\n",
7071
+ "L1.tesla 0.190132 0.125216 1.518 0.129\n",
7072
+ "L2.apple -0.046830 0.435648 -0.107 0.914\n",
7073
+ "L2.walmart -0.125800 0.335034 -0.375 0.707\n",
7074
+ "L2.tesla 0.315252 0.125529 2.511 0.012\n",
7075
+ "L3.apple 0.806135 0.438482 1.838 0.066\n",
7076
+ "L3.walmart -0.279177 0.327980 -0.851 0.395\n",
7077
+ "L3.tesla -0.426441 0.123450 -3.454 0.001\n",
7078
+ "L4.apple -0.685840 0.362751 -1.891 0.059\n",
7079
+ "L4.walmart 0.055336 0.329363 0.168 0.867\n",
7080
+ "L4.tesla 0.397299 0.123244 3.224 0.001\n",
7081
+ "L5.apple 0.071231 0.402077 0.177 0.859\n",
7082
+ "L5.walmart -0.108462 0.329783 -0.329 0.742\n",
7083
+ "L5.tesla -0.050922 0.135447 -0.376 0.707\n",
7084
+ "L6.apple -0.389905 0.399548 -0.976 0.329\n",
7085
+ "L6.walmart -0.362135 0.337460 -1.073 0.283\n",
7086
+ "L6.tesla -0.029577 0.131017 -0.226 0.821\n",
7087
+ "L7.apple 0.402571 0.388859 1.035 0.301\n",
7088
+ "L7.walmart -0.773885 0.339006 -2.283 0.022\n",
7089
+ "L7.tesla 0.070900 0.126445 0.561 0.575\n",
7090
+ "L8.apple 0.057018 0.369107 0.154 0.877\n",
7091
+ "L8.walmart -0.253383 0.339812 -0.746 0.456\n",
7092
+ "L8.tesla -0.060940 0.119222 -0.511 0.609\n",
7093
+ "L9.apple -0.814436 0.379410 -2.147 0.032\n",
7094
+ "L9.walmart 0.692883 0.338329 2.048 0.041\n",
7095
+ "L9.tesla 0.170148 0.118103 1.441 0.150\n",
7096
+ "L10.apple 0.165284 0.381830 0.433 0.665\n",
7097
+ "L10.walmart -0.070246 0.341086 -0.206 0.837\n",
7098
+ "L10.tesla 0.111133 0.117065 0.949 0.342\n",
7099
+ "L11.apple -0.257494 0.386104 -0.667 0.505\n",
7100
+ "L11.walmart -0.834862 0.331288 -2.520 0.012\n",
7101
+ "L11.tesla 0.318169 0.108998 2.919 0.004\n",
7102
+ "L12.apple 1.048785 0.364413 2.878 0.004\n",
7103
+ "L12.walmart 0.390809 0.313235 1.248 0.212\n",
7104
+ "L12.tesla -0.268612 0.110798 -2.424 0.015\n",
7105
+ "L13.apple -0.201846 0.346456 -0.583 0.560\n",
7106
+ "L13.walmart 0.385814 0.327363 1.179 0.239\n",
7107
+ "L13.tesla -0.250162 0.117359 -2.132 0.033\n",
7108
+ "L14.apple -0.934654 0.331317 -2.821 0.005\n",
7109
+ "L14.walmart -0.212581 0.306624 -0.693 0.488\n",
7110
+ "L14.tesla 0.296885 0.117067 2.536 0.011\n",
7111
+ "L15.apple 1.015922 0.336607 3.018 0.003\n",
7112
+ "L15.walmart -0.438696 0.314087 -1.397 0.162\n",
7113
+ "L15.tesla -0.205261 0.116373 -1.764 0.078\n",
7114
+ "==============================================================================\n",
7115
+ "\n",
7116
+ "Correlation matrix of residuals\n",
7117
+ " apple walmart tesla\n",
7118
+ "apple 1.000000 0.281952 0.608528\n",
7119
+ "walmart 0.281952 1.000000 0.187816\n",
7120
+ "tesla 0.608528 0.187816 1.000000\n",
7121
+ "\n"
7122
+ ]
7123
+ },
7124
+ "execution_count": 28,
7125
+ "metadata": {},
7126
+ "output_type": "execute_result"
7127
+ }
7128
+ ],
7129
+ "source": [
7130
+ "results = model.fit(maxlags=15, ic='aic')\n",
7131
+ "results.summary()"
7132
+ ]
7133
+ },
7134
+ {
7135
+ "cell_type": "code",
7136
+ "execution_count": 31,
7137
+ "metadata": {},
7138
+ "outputs": [],
7139
+ "source": [
7140
+ "out = durbin_watson(results.resid)"
7141
+ ]
7142
+ },
7143
+ {
7144
+ "cell_type": "code",
7145
+ "execution_count": 32,
7146
+ "metadata": {},
7147
+ "outputs": [
7148
+ {
7149
+ "name": "stdout",
7150
+ "output_type": "stream",
7151
+ "text": [
7152
+ "apple : 2.12\n",
7153
+ "walmart : 1.9\n",
7154
+ "tesla : 2.13\n"
7155
+ ]
7156
+ }
7157
+ ],
7158
+ "source": [
7159
+ "for col, val in zip(df.columns, out):\n",
7160
+ " print(col, ':', round(val, 2))"
7161
+ ]
7162
+ },
7163
+ {
7164
+ "cell_type": "code",
7165
+ "execution_count": 34,
7166
+ "metadata": {},
7167
+ "outputs": [],
7168
+ "source": [
7169
+ "maxlag=15\n",
7170
+ "test = 'ssr_chi2test'"
7171
+ ]
7172
+ },
7173
+ {
7174
+ "cell_type": "code",
7175
+ "execution_count": 35,
7176
+ "metadata": {},
7177
+ "outputs": [],
7178
+ "source": [
7179
+ "def grangers_causation_matrix(data, variables, test='ssr_chi2test', verbose=False): \n",
7180
+ " \n",
7181
+ " df = pd.DataFrame(np.zeros((len(variables), len(variables))), columns=variables, index=variables)\n",
7182
+ " for c in df.columns:\n",
7183
+ " for r in df.index:\n",
7184
+ " test_result = grangercausalitytests(data[[r, c]], maxlag=maxlag, verbose=False)\n",
7185
+ " p_values = [round(test_result[i+1][0][test][1],4) for i in range(maxlag)]\n",
7186
+ " if verbose: print(f'Y = {r}, X = {c}, P Values = {p_values}')\n",
7187
+ " min_p_value = np.min(p_values)\n",
7188
+ " df.loc[r, c] = min_p_value\n",
7189
+ " df.columns = [var + '_x' for var in variables]\n",
7190
+ " df.index = [var + '_y' for var in variables]\n",
7191
+ " return df"
7192
+ ]
7193
+ },
7194
+ {
7195
+ "cell_type": "code",
7196
+ "execution_count": 38,
7197
+ "metadata": {},
7198
+ "outputs": [
7199
+ {
7200
+ "name": "stderr",
7201
+ "output_type": "stream",
7202
+ "text": [
7203
+ "/home/ibnu/miniconda3/envs/py312/lib/python3.12/site-packages/statsmodels/tsa/stattools.py:1545: FutureWarning:\n",
7204
+ "\n",
7205
+ "verbose is deprecated since functions should not print results\n",
7206
+ "\n",
7207
+ "/home/ibnu/miniconda3/envs/py312/lib/python3.12/site-packages/statsmodels/tsa/stattools.py:1545: FutureWarning:\n",
7208
+ "\n",
7209
+ "verbose is deprecated since functions should not print results\n",
7210
+ "\n",
7211
+ "/home/ibnu/miniconda3/envs/py312/lib/python3.12/site-packages/statsmodels/tsa/stattools.py:1545: FutureWarning:\n",
7212
+ "\n",
7213
+ "verbose is deprecated since functions should not print results\n",
7214
+ "\n",
7215
+ "/home/ibnu/miniconda3/envs/py312/lib/python3.12/site-packages/statsmodels/tsa/stattools.py:1545: FutureWarning:\n",
7216
+ "\n",
7217
+ "verbose is deprecated since functions should not print results\n",
7218
+ "\n",
7219
+ "/home/ibnu/miniconda3/envs/py312/lib/python3.12/site-packages/statsmodels/tsa/stattools.py:1545: FutureWarning:\n",
7220
+ "\n",
7221
+ "verbose is deprecated since functions should not print results\n",
7222
+ "\n",
7223
+ "/home/ibnu/miniconda3/envs/py312/lib/python3.12/site-packages/statsmodels/tsa/stattools.py:1545: FutureWarning:\n",
7224
+ "\n",
7225
+ "verbose is deprecated since functions should not print results\n",
7226
+ "\n",
7227
+ "/home/ibnu/miniconda3/envs/py312/lib/python3.12/site-packages/statsmodels/tsa/stattools.py:1545: FutureWarning:\n",
7228
+ "\n",
7229
+ "verbose is deprecated since functions should not print results\n",
7230
+ "\n",
7231
+ "/home/ibnu/miniconda3/envs/py312/lib/python3.12/site-packages/statsmodels/tsa/stattools.py:1545: FutureWarning:\n",
7232
+ "\n",
7233
+ "verbose is deprecated since functions should not print results\n",
7234
+ "\n",
7235
+ "/home/ibnu/miniconda3/envs/py312/lib/python3.12/site-packages/statsmodels/tsa/stattools.py:1545: FutureWarning:\n",
7236
+ "\n",
7237
+ "verbose is deprecated since functions should not print results\n",
7238
+ "\n"
7239
+ ]
7240
+ },
7241
+ {
7242
+ "data": {
7243
+ "text/html": [
7244
+ "<div>\n",
7245
+ "<style scoped>\n",
7246
+ " .dataframe tbody tr th:only-of-type {\n",
7247
+ " vertical-align: middle;\n",
7248
+ " }\n",
7249
+ "\n",
7250
+ " .dataframe tbody tr th {\n",
7251
+ " vertical-align: top;\n",
7252
+ " }\n",
7253
+ "\n",
7254
+ " .dataframe thead th {\n",
7255
+ " text-align: right;\n",
7256
+ " }\n",
7257
+ "</style>\n",
7258
+ "<table border=\"1\" class=\"dataframe\">\n",
7259
+ " <thead>\n",
7260
+ " <tr style=\"text-align: right;\">\n",
7261
+ " <th></th>\n",
7262
+ " <th>apple_x</th>\n",
7263
+ " <th>walmart_x</th>\n",
7264
+ " <th>tesla_x</th>\n",
7265
+ " </tr>\n",
7266
+ " </thead>\n",
7267
+ " <tbody>\n",
7268
+ " <tr>\n",
7269
+ " <th>apple_y</th>\n",
7270
+ " <td>1.0</td>\n",
7271
+ " <td>0.0003</td>\n",
7272
+ " <td>0.0</td>\n",
7273
+ " </tr>\n",
7274
+ " <tr>\n",
7275
+ " <th>walmart_y</th>\n",
7276
+ " <td>0.0</td>\n",
7277
+ " <td>1.0000</td>\n",
7278
+ " <td>0.0</td>\n",
7279
+ " </tr>\n",
7280
+ " <tr>\n",
7281
+ " <th>tesla_y</th>\n",
7282
+ " <td>0.0</td>\n",
7283
+ " <td>0.0000</td>\n",
7284
+ " <td>1.0</td>\n",
7285
+ " </tr>\n",
7286
+ " </tbody>\n",
7287
+ "</table>\n",
7288
+ "</div>"
7289
+ ],
7290
+ "text/plain": [
7291
+ " apple_x walmart_x tesla_x\n",
7292
+ "apple_y 1.0 0.0003 0.0\n",
7293
+ "walmart_y 0.0 1.0000 0.0\n",
7294
+ "tesla_y 0.0 0.0000 1.0"
7295
+ ]
7296
+ },
7297
+ "execution_count": 38,
7298
+ "metadata": {},
7299
+ "output_type": "execute_result"
7300
+ }
7301
+ ],
7302
+ "source": [
7303
+ "grangers_causation_matrix(df_train_transformed, variables = df_train_transformed.columns)"
7304
+ ]
7305
+ },
7306
  {
7307
  "cell_type": "code",
7308
  "execution_count": null,