ibnummuhammad commited on
Commit
5fa0f49
1 Parent(s): 1c8f3cd

Add auto_regression.ipynb

Browse files
Files changed (2) hide show
  1. autoregression.ipynb +0 -0
  2. coal-price-forecast.ipynb +1435 -30
autoregression.ipynb CHANGED
The diff for this file is too large to render. See raw diff
 
coal-price-forecast.ipynb CHANGED
@@ -2,15 +2,25 @@
2
  "cells": [
3
  {
4
  "cell_type": "code",
5
- "execution_count": 1,
6
  "metadata": {},
7
  "outputs": [],
8
  "source": [
9
  "import matplotlib.pyplot as plt\n",
10
  "import pandas as pd\n",
 
11
  "from scipy import stats"
12
  ]
13
  },
 
 
 
 
 
 
 
 
 
14
  {
15
  "cell_type": "code",
16
  "execution_count": 3,
@@ -161,10 +171,1428 @@
161
  }
162
  ],
163
  "source": [
164
- "df_coal = pd.read_csv(\"../coal-price-data/coal_price_data.csv\")\n",
165
  "df_coal"
166
  ]
167
  },
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
168
  {
169
  "cell_type": "code",
170
  "execution_count": null,
@@ -174,7 +1602,7 @@
174
  },
175
  {
176
  "cell_type": "code",
177
- "execution_count": 5,
178
  "metadata": {},
179
  "outputs": [],
180
  "source": [
@@ -186,21 +1614,9 @@
186
  },
187
  {
188
  "cell_type": "code",
189
- "execution_count": 7,
190
  "metadata": {},
191
- "outputs": [
192
- {
193
- "name": "stdout",
194
- "output_type": "stream",
195
- "text": [
196
- "slope: 0.600533935403765\n",
197
- "intercept: 33.65381401159914\n",
198
- "r: 0.9606500704209069\n",
199
- "p: 1.9310655623962052e-81\n",
200
- "std_err: 0.01452032511898455\n"
201
- ]
202
- }
203
- ],
204
  "source": [
205
  "print(f\"slope: {slope}\")\n",
206
  "print(f\"intercept: {intercept}\")\n",
@@ -211,20 +1627,9 @@
211
  },
212
  {
213
  "cell_type": "code",
214
- "execution_count": 8,
215
  "metadata": {},
216
- "outputs": [
217
- {
218
- "data": {
219
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkUAAAGwCAYAAACnyRH2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAABOZ0lEQVR4nO3dfXyT1d0/8E9S+ghNSqFtUnmwPAjUUpHniCBKoQWsIHUThImOW0dXdOAT4q0iuq3o/M2JU7h3bze4IeBwAoJY5UHKkAoIIpQqA1YsD03LqE1KoaVtzu+PmrRXk7RJm+TKlXzer1dfL3JdV5JzSCUfz/U956iEEAJEREREQU4tdwOIiIiI/AFDEREREREYioiIiIgAMBQRERERAWAoIiIiIgLAUEREREQEgKGIiIiICADQSe4G+AOLxYKLFy8iOjoaKpVK7uYQERGRC4QQqKqqQmJiItTqjo/zMBQBuHjxInr27Cl3M4iIiKgdzp07hx49enT4dRiKAERHRwNo/EvVaDQyt4aIiIhcYTab0bNnT9v3eEcxFAG2W2YajYahiIiISGE8VfrCQmsiIiIiMBQRERERAZA5FK1cuRKpqam221YGgwGffPKJ7XxNTQ1ycnLQrVs3dOnSBVlZWSgrK5O8RklJCaZOnYqoqCjEx8fj6aefRn19va+7QkRERAonayjq0aMHli9fjsOHD+Orr77CXXfdhWnTpuHEiRMAgEWLFmHr1q3YuHEj8vPzcfHiRcyYMcP2/IaGBkydOhXXr1/H/v378e6772LNmjV48cUX5eoSERERKZRKCCHkbkRzsbGx+N3vfof77rsPcXFxWLduHe677z4AwHfffYdBgwahoKAAo0ePxieffIK7774bFy9eREJCAgBg1apVWLx4MS5duoSwsDCX3tNsNkOr1cJkMrHQmoiISCE8/f3tNzVFDQ0N2LBhA6qrq2EwGHD48GHU1dUhLS3Nds3AgQPRq1cvFBQUAAAKCgowePBgWyACgPT0dJjNZttokyO1tbUwm82SHyIiIgpusoei48ePo0uXLggPD8f8+fOxadMmJCcnw2g0IiwsDDExMZLrExISYDQaAQBGo1ESiKznreecyc3NhVartf1w4UYiIiKSPRQNGDAAR48exYEDB5CdnY25c+eiqKjIq++5ZMkSmEwm28+5c+e8+n5ERETk/2RfvDEsLAz9+vUDAAwbNgyHDh3Cm2++ifvvvx/Xr19HZWWlZLSorKwMOp0OAKDT6XDw4EHJ61lnp1mvcSQ8PBzh4eEe7gkREREpmewjRS1ZLBbU1tZi2LBhCA0Nxa5du2znTp48iZKSEhgMBgCAwWDA8ePHUV5ebrtmx44d0Gg0SE5O9nnbiYiISLlkHSlasmQJJk+ejF69eqGqqgrr1q3Dnj178Omnn0Kr1WLevHl44oknEBsbC41Gg8ceewwGgwGjR48GAEyaNAnJycn42c9+htdeew1GoxHPP/88cnJyOBJEREREbpE1FJWXl+PBBx9EaWkptFotUlNT8emnn2LixIkAgDfeeANqtRpZWVmora1Feno63nnnHdvzQ0JCsG3bNmRnZ8NgMKBz586YO3cuXn75Zbm6RERERArld+sUyYHrFBEREXmJEIClFgiJ8PhLB+w6RURERBRgin4HrFcDm3sADTVyt6ZNss8+IyIiogDTUAO8H9n0uPYyAJVszXEVR4qIiIjIc4y7pYEIAKafA0L8fwIUR4qIiIjIMz6fDJTmNT2+IRO44yP52uMmhiIiIiLqmOoSYEtv6bEJe4CEO+RoTbsxFBEREVH7Fb0GHF3c9FgdCvykShG3y1piKCIiIiL3tSymBoChvwcGLpKnPR7AUERERETuMe4CdqdJj00/B0T1kKc9HsJQRERERK77PAMo/bTpscKKqVvDUERERERtC5Bi6tYwFBEREVHr7Iqpw4CfmBVZTN0ahiIiIiJyLACLqVvDUERERET2HBZTnweibpCnPT7AUERERERSdsXU9wB3bJGvPT7CUERERESNHBVTp+UD8ePkaY+PMRQRERFR0BRTt4ahiIiIKJgFWTF1axiKiIiIglUQFlO3hqGIiIgo2AjRWExt/KzpWJAUU7eGoYiIiCiYeLCYusEicLC4AuVVNYiPjsDIpFiEqFUeaqjvMRQREREFCw8WU+cVlmLZ1iKUmmpsx/TaCCzNTEZGit4TrfU5tdwNICIiIi9rqAHWqaSBaOgbwMzadgei7LVHJIEIAIymGmSvPYK8wtKOtlgWHCkiIiKSiU9uP3m4mLrBIrBsaxGEg3MCgArAsq1FmJisU9ytNIYiIiIiGXj99pOjYuoe04Bxmzv0sgeLK+xGiCRvC6DUVIODxRUw9O3WoffyNd4+IyIi8jGv336qLgHWq6WBKC2/w4EIAMqrnAei9lznTxiKiIiIfKit209A4+2nBoujK1xQ9Kp0dllIBHB/rce26oiPjvDodf6EoYiIiMiH3Ln95BZbMfWzTceGvgHcfw0ICWtfYx0YmRQLvTYCzqqFVGi8DTgyKdZj7+krDEVEREQ+5JXbT8ad9lt1TD8PDFzo+mu4KEStwtLMZACwC0bWx0szkxVXZA0wFBEREfmUR28/CQHsTgd2T2w61mMa8IDw6lYdGSl6rJwzFDqttI06bQRWzhmq2HWKOPuMiIjIh6y3n4ymGod1RSo0hos2bz9Vfw9suVF6rJ0rU7dHRooeE5N1XNGaiCgYBdqWBiQP6+2n7LVHoAIkwcjl209Fr0prh0IigPtMHq0dckWIWqW4afetYSgiInJBIG5pQPKx3n5q+Tula+t3qqHGvnZo6B+Agb/yXmODiEoI0c45f4HDbDZDq9XCZDJBo9HI3Rwi8jPWNWVa/mNp/f94JddQkLzcGn007pTWDgEdWpk6EHj6+5sjRURErQjkLQ1Ifi7dfnK4MvV0YNwmr7YtGDEUERG1IpC3NCAFcFhMvReIHytLcwIdQxERUSsCeUsD8nMnlgPfLGl6LFMxdTBhKCIiakUgb2lAforF1LJhKCIiaoXH1pQhcoWXiqm5nIRrGIqIiFrhkTVliNoiBPB5OmDc0XTMQ8XUXE7Cddzmg4ioDYG6pQH5iervgfVqaSBK2+uxQJS99ojdZAGjqQbZa48gr7C0w+8RSDhSRETkgkDc0oD8gBeLqbmchPsYioiIXBRoWxqQjHxQTM3lJNzHUERERORLPlqZmstJuI+hiIiIyBccFlPfC4z70Ctv5w/LSSht1htDERERkbfJsDK13MtJKHHWG2efERERedOJ5dJAFBIB3F/r9a06rMtJAE3LR1h5ezkJpc56YygiIiLyhoYaYJ1KOrts2JvA/dd8tlWHHMtJtDXrDWic9dZgcXSFvHj7jIiIgopP6lxKdwCfT5Iem34BiEr07Pu4wNfLSSh51htDERER+YQ/FN16vc5FiMYwZNzZdMyLxdSu8uVyEkqe9cZQREREXucPRbfWOpeWN22sdS4dvp0kQzG1P/KHWW/txZoiIiLyKn8ouvV6ncuJXFmKqf2RddabszFAFRoDsT9uosxQREREXuMvRbfu1Lm4pf7aj8XUzzUd83Extb+Rc9ZbRzEUERGR13gtjLjJK3UupTuAv0dJj02/AAx43I2WBSalbqLMmiIiIvIafym69Widi58WU/sbJW6izFBERERe4y9Ftx5b3ZnF1G5R2ibKvH1GRERe4y9Ftx6pc7Erpo4M2mLqQMVQREREXuNPRbftrnNxWkx9NWiLqRssAgVnLmPL0QsoOHPZL1enbg+VECIwetIBZrMZWq0WJpMJGo1G7uYQEQUcf1inyMqtRST9aGVqf+FPn6Wnv78ZisBQRETkC/6worXLhAB2TwTKdjUdYzG10wUwrZ+ir2eWefr7W9bbZ7m5uRgxYgSio6MRHx+P6dOn4+TJk5Jrxo8fD5VKJfmZP3++5JqSkhJMnToVUVFRiI+Px9NPP436+npfdoWIiNpgLbqdNuQGGPp2899AdOUssF4tDURpe4M+EPnLmlPeJGsoys/PR05ODr788kvs2LEDdXV1mDRpEqqrqyXXPfLIIygtLbX9vPbaa7ZzDQ0NmDp1Kq5fv479+/fj3XffxZo1a/Diiy/6ujtERKR0J34LfJTU9JjF1Db+suaUN8k6JT8vL0/yeM2aNYiPj8fhw4cxbtw42/GoqCjodDqHr/HZZ5+hqKgIO3fuREJCAoYMGYJXXnkFixcvxksvvYSwMPsiuNraWtTW1toem81mD/WIiIgUqf6a/UKMw97kQozN+MuaU97kV7PPTCYTACA2Vjo187333kP37t2RkpKCJUuW4OrVq7ZzBQUFGDx4MBISEmzH0tPTYTabceLECYfvk5ubC61Wa/vp2bOnF3pDRESKwJWpXeIva055k98s3mixWLBw4UKMGTMGKSkptuMPPPAAevfujcTERBw7dgyLFy/GyZMn8eGHjfd2jUajJBABsD02Go0O32vJkiV44oknbI/NZjODERFRsBEC2J0GlO1uOqagYmpfF657bAFMP+Y3oSgnJweFhYXYt2+f5Pijjz5q+/PgwYOh1+sxYcIEnDlzBn379m3Xe4WHhyM8PLxD7SUiIgW7clZaOwQAaf8E4m+XpTnukmNavHXNqey1R6ACJMHI3zd6dZVf3D5bsGABtm3bhs8//xw9evRo9dpRo0YBAE6fPg0A0Ol0KCsrk1xjfeysDomIiIKYXTF11I/F1MoJRNlrj9gVPRtNNcheewR5haVee2+lbvTqKllHioQQeOyxx7Bp0ybs2bMHSUlJbT7n6NGjAAC9vvEv3mAw4De/+Q3Ky8sRHx8PANixYwc0Gg2Sk5O91nYiIlKYACimbmtavAqN0+InJuu8NmKjxI1eXSVrKMrJycG6deuwZcsWREdH22qAtFotIiMjcebMGaxbtw5TpkxBt27dcOzYMSxatAjjxo1DamoqAGDSpElITk7Gz372M7z22mswGo14/vnnkZOTw1tkRETUyNHK1PdeBCKVNbLhzrR4b27EqrSNXl0l6+2zlStXwmQyYfz48dDr9baf999/HwAQFhaGnTt3YtKkSRg4cCCefPJJZGVlYevWrbbXCAkJwbZt2xASEgKDwYA5c+bgwQcfxMsvvyxXt4iIyF8IAeyaIA1EPWcADwjFBSIgOKbFy0n222et6dmzJ/Lz89t8nd69e2P79u2eahYREQUChRdTOxIM0+Ll5BeF1kRERB6l8GJqZ6zT4p1V76jQOAtNydPi5cRQREREgaP+GrBOBXzz303Hhr0J3F8NhNjvcKA01mnxAOyCUaBMi5cTQxEREQWG0s/sZ5fde1FRs8tcEejT4uXkN4s3EhERtYujlal7zgDG/kO+NnlZIE+LlxNDERERKVcAFlO7ytm0eF9v/xFIGIqIiEiZTvxWWjvUqTOQVREQtUPtJcf2H4GENUVERKQsDoup3wJ+eiXoA5Fc238ECoYiIiJSDqfF1AvkaY+faGv7D6Bx+48GS+vrAwY7hiIiIvJ/tpWp05uO9cxS7MrUnubO9h/kHGuKiIjIvwVxMbWruP2HZzAUERGR/yr8DXDs+abHLKZ2iNt/eAZDERER+Z/6a/a1Q8PeCvraIWes238YTTUO64pUaFzckdt/tI41RURE5F9YTO02bv/hGQxFRETkH1hM3SHc/qPjePuMiIjkx2Jqj+D2Hx3DUERERPKyK6buAmRdZjF1Oznb/oPaxlBERETyYDE1+RmGIiIi8r3Sz6S1Q0BjMTVrh0hGDEVEROQ7QgC704Cy3U3Het4HjN0oX5uIfsRQREREvnGlGPioj/TYxH1A3Bh52kPUAkMREdGPGiyCs3a8hcXUpAAMRUREAPIKS7Fsa5FkU029NgJLM5O5vktHsJiaFISLNxJR0MsrLEX22iN2u4wbTTXIXnsEeYWlMrVM4bgyNSkMQxERBbUGi8CyrUUO94uyHlu2tQgNFkdXkENCADvvbLEy9X1cmZr8Hm+fEVFQO1hcYTdC1JwAUGqqwcHiCi6I5woWU5OCMRQRUVArr3IeiNpzXVBjMTUpHEMREQW1+OiIti9y47qgxGJqChAMRUQU1EYmxUKvjYDRVOOwrkiFxl3GRybF+rppysCVqSmAsNCaiIJaiFqFpZnJABoDUHPWx0szk7leUUuOiql7/YTF1KRoDEVEFPQyUvRYOWcodFrpLTKdNgIr5wzlOkUtXSkG1quB8j1NxybuA27/u2xNIvIE3j4jIkJjMJqYrOOK1m0p/DVw7IWmx526APdVAOpQ+dpE5CEMRUREPwpRqzjt3hlHxdTD/wjclCNPe4i8gKGIiIhad/FTYE+G9BiLqSkAMRQREZFjQgC77pLWDvX6CWuHKGAxFBERkT2uTE1BiKGIiIikWExNQYqhiIiIGrGYmoIcQxERETkppi4FInXytIdIBgxFRETBjMXURDYMRUREwcphMfUXQNxt8rSHSGYMRUREwahlMXWoBsj6D4upKagxFBERBZP6q8DfO0uPDX8buOmX8rSHyI8wFBERBQsWUxO1iqGIiCjQCQHsuhMoz2861uunwO3vy9cmIj/EUEREFMhYTE3kMoYiIqJAdfwV4PiLTY9ZTE3UKoYiIqJAw2JqonZhKCIiCiQspiZqN4YiIvILDRaBg8UVKK+qQXx0BEYmxSJErZK7WcrBYmqiDmMoIiLZ5RWWYtnWIpSaamzH9NoILM1MRkaKXsaWKQSLqYk8Qi13A4gouOUVliJ77RFJIAIAo6kG2WuPIK+wVKaWKcTxV6SBKFQDzLzOQETUDgxFRCSbBovAsq1FEA7OWY8t21qEBoujK4Jc/VVgnUo6u2z428BPTJxdRtRODEVEJJuDxRV2I0TNCQClphocLK7wXaOU4GKe/eyye0s5u4yog1hTRESyKa9yHojac13AEwLYNR4o39t0jMXURB7DUEREsomPjvDodQHtyr+Bj/pKj7GYmsijePuMiGQzMikWem0EnE28V6FxFtrIpFhfNsv/HH9FGohYTE3kFQxFRCSbELUKSzOTAcAuGFkfL81MDt71ilhMTeRTDEVEJKuMFD1WzhkKnVZ6i0ynjcDKOUODd50iFlMT+ZysoSg3NxcjRoxAdHQ04uPjMX36dJw8eVJyTU1NDXJyctCtWzd06dIFWVlZKCsrk1xTUlKCqVOnIioqCvHx8Xj66adRX1/vy64QUQdkpOixb/FdWP/IaLw5cwjWPzIa+xbfFZyBSAhg5x3AnslNx3r9FHhAcKsOIi+TtdA6Pz8fOTk5GDFiBOrr6/Hcc89h0qRJKCoqQufOjf+HtGjRInz88cfYuHEjtFotFixYgBkzZuCLL74AADQ0NGDq1KnQ6XTYv38/SktL8eCDDyI0NBS//e1v5eweEbkhRK2CoW83uZshL4fF1PuBOIM87SEKMiohhN+sinbp0iXEx8cjPz8f48aNg8lkQlxcHNatW4f77rsPAPDdd99h0KBBKCgowOjRo/HJJ5/g7rvvxsWLF5GQkAAAWLVqFRYvXoxLly4hLCyszfc1m83QarUwmUzQaDRe7SMRkUPHX5HWDoVqgaxLrB0iaoWnv7/9qqbIZDIBAGJjG2eaHD58GHV1dUhLS7NdM3DgQPTq1QsFBQUAgIKCAgwePNgWiAAgPT0dZrMZJ06ccPg+tbW1MJvNkh+iYNNgESg4cxlbjl5AwZnLXDVaLo6KqUe8A/ykkoGIyMf8Zp0ii8WChQsXYsyYMUhJSQEAGI1GhIWFISYmRnJtQkICjEaj7Zrmgch63nrOkdzcXCxbtszDPSBSDm7A6icu5klrh4DGYmrWDhHJwm9GinJyclBYWIgNGzZ4/b2WLFkCk8lk+zl37pzX35PIX3ADVj/gsJj6fhZTE8nML0aKFixYgG3btmHv3r3o0aOH7bhOp8P169dRWVkpGS0qKyuDTqezXXPw4EHJ61lnp1mvaSk8PBzh4eEe7gWR/2trA1YVGjdgnZisC961gbyNxdREfkvWkSIhBBYsWIBNmzZh9+7dSEpKkpwfNmwYQkNDsWvXLtuxkydPoqSkBAZD4z8gBoMBx48fR3l5ue2aHTt2QKPRIDk52TcdIVIIbsAqs+Mvt1iZWvvjytQMRET+QNaRopycHKxbtw5btmxBdHS0rQZIq9UiMjISWq0W8+bNwxNPPIHY2FhoNBo89thjMBgMGD16NABg0qRJSE5Oxs9+9jO89tprMBqNeP7555GTk8PRIKIWuAGrTOqv2i/EOOIdoH+2PO0hIodkDUUrV64EAIwfP15yfPXq1XjooYcAAG+88QbUajWysrJQW1uL9PR0vPPOO7ZrQ0JCsG3bNmRnZ8NgMKBz586YO3cuXn75ZV91g0gxuAGrDC5+AuyZIj3GYmoiv+RX6xTJhesUUbBosAjc/upuGE01DuuKVGjcXmPf4rtYU9RR1mLqS/9sOtbrfuB2708mIQoWAb1OERF5Fzdg9ZEr/wbWq6WBaOJ+BiIiP8dQRBRkuAGrl9kVU8ewmJpIIfxiSj4R+VZGih4Tk3U4WFyB8qoaxEdHYGRSLEeIOoLF1ESKx1BEFKS4AasHsZiaKCAwFBERtZcQwM5xwKV9TcdYTE2kWAxFRETtwZWpiQIOQxERkbuOvwwcX9r0ODQGyCrnrvZECsdQRETkKhZTEwU0hiIiIlewmJoo4DEUERG1xlExde+ZwJj18rWJiLyCoYhIYRosgusL+QqLqYmCCkMRkYLkFZZi2dYilJqadrHXayOwNDOZK1F7GoupiYIOt/kgUoi8wlJkrz0iCUQAYDTVIHvtEeQVlsrUsgBTfxVYp5IGohHvAD/5gYGIKMAxFBEpQINFYNnWIoc721uPLdtahAaLoyvIZRc/sZ9ddq+Rs8uIggRDEZECHCyusBshak4AKDXV4GBxhe8aFUiEAHaMlc4u6z0LeEAAkQnytYuIfIo1RUQKUF7lPBC15zpqhsXURPQjjhQRKUB8dIRHr6MfHV8mDURhXYGZ1xmIiIKUx0LRmTNncNddd3nq5YiomZFJsdBrI+Bs4r0KjbPQRibF+rJZymUrpn6p6diId4D7KlhMTRTEPBaKrly5gvz8fE+9HBE1E6JWYWlmMgDYBSPr46WZyVyvyBUXtrOYmogccrmmaMWKFa2ev3DhQocbQ0TOZaTosXLOULt1inRcp8g1DlemngWMWSdfm4jIr6iEEC7N4VWr1dDr9QgLC3N4/vr16zAajWhoaPBoA33BbDZDq9XCZDJBo9HI3RyiVnFF63aoOgNs7Sc9xmJqIsXz9Pe3yyNFvXv3xquvvoqf/vSnDs8fPXoUw4YN63CDiKh1IWoVDH27yd0M5Ti+TFo7FBYLzDCydoiI7LhcUzRs2DAcPnzY6XmVSgUXB52IiLzPYTH1SuC+ywxEROSQyyNFL7/8Mq5ever0fHJyMoqLiz3SKCKiDrmwHcifKj12r5ELMRJRq1wORcnJya2eDw0NRe/evTvcICKidnNYTP0AMOY9+dpERIrBFa2JgkTAF2g7KqaeVAB0Hy1Pe9oQ8J8HkQIxFBEFgbzCUrup/PpAmsp/7CWgcFnTYz8vpg74z4NIobjNB1GAyyssRfbaI3YbyhpNNcheewR5haUytcwD6qsbi6mbByI/L6YO6M+DSOEYiogCWINFYNnWIjiaF2o9tmxrERosCpw5emE78Pcu0mP3GoH+8+VpjwsC+vMgCgAMRUQB7GBxhd2IRHMCQKmpBgeLK3zXqI4SAthxu3R2We8HgAeE388uC8jPgyiAeGybD6vHH3+83Y0hIs8qr3L+Bdye62SnsGLqlgLu8yAKMC6HojfeeKPNa1QqFUMRkR+Jj47w6HWyOvaSooqpHQmoz4MoALkcirgwI5HyjEyKhV4bAaOpxmEdiwqNG8qOTIr1ddNcV19tXzs0YhXQ/xfytKcDAuLzIApgrCkiCmAhahWWZjYuvNpyBRzr46WZyf67Po7TYmrlBSIgAD4PogDncijavXs3kpOTYTab7c6ZTCbcfPPN2Lt3r0cbR0Qdl5Gix8o5Q6HTSm/J6LQRWDlnqH+ui6PgYuq2KPLzIAoSKuHiLq733HMP7rzzTixatMjh+RUrVuDzzz/Hpk2bPNpAXzCbzdBqtTCZTNBoNHI3h8grFLOCssKLqV2lmM+DyI95+vvb5VDUu3dv5OXlYdCgQQ7Pf/fdd5g0aRJKSko63ChfYygi8hPHXlJ8MTUR+Y6nv79dLrQuKytDaKjzf5g6deqES5cudbhBRBSEAqiYmoiUy+WaohtuuAGFhYVOzx87dgx6Pe+FE5GbLnwcUMXURKRcLoeiKVOm4IUXXkBNjf2iYteuXcPSpUtx9913e7RxRBTAhAA+GwPkN/t3I0CKqYlImVyuKSorK8PQoUMREhKCBQsWYMCAAQAaa4nefvttNDQ04MiRI0hIUN4/ZqwpIvKxICmmJiLvkq2mKCEhAfv370d2djaWLFkCa5ZSqVRIT0/H22+/rchAREQ+dmwpUPhy02MWUxORn3A5FAGNM9C2b9+OH374AadPn4YQAv3790fXrl291T4iChSOiqlH/g/Q71F52kNE1IJbociqa9euGDFihKfbQkSB6sLH0tohAJhRBkTEy9MeIiIHXA5FM2bMcOm6Dz/8sN2NIaIAY12Z+j/7m471fgAY8558bSIicsLlUKTVar3ZDiIKNA6Lqb8Euo+Spz1ERG1wORStXr3am+0gokDSspg6vBtwb6nTYmpueUFE/qBdNUVESsQvXh9oRzF1XmEplm0tQqmpaQ00vTYCSzOTuTkqEfkUQxEFBW988TJktdCOYuq8wlJkrz2CloulGU01yF57hLvGE5FPMRRRwPPGFy9HN5oRAtgxBvhPQdOxG2cDt61t9WkNFoFlW4vsPhcAEABUAJZtLcLEZF1wh00i8hmXt/kgUqK2vniBxi/eBotLC7sDaApZzQMR0BSy8gpL299gpak6DaxXSwPRpC/bDEQAcLC4wu7vsDkBoNRUg4PFFR5oKBFR2xiKKKB5+ovXGyFLsY69CGzt3/Q4vBsw87rLs8vKq5x/Lu25joioo3j7jAKap7943QlZhr7dXHpNxfHQytTx0REevY6IqKMYiiigefqLN+hHNzy4MvXIpFjotREwmmocjrypAOi0jQXsRES+wNtnFNCsX7zOynRVaCyQdvWLN2hHN4QAPjVIA9GNs4EHRLu36ghRq7A0MxkA7D4f6+OlmckssiYin2EoooDm6S9eT4csRbAWU1/+sumYi8XUbclI0WPlnKHQaaUhUqeN4HR8IvI5lRAiCCpCW2c2m6HVamEymaDRaORuDnmBJ6fQW2efAZDc9rEGpY58mfvd2kfHXgQKX2l6HN79x5WpPXvn3e/6TUSK4Onvb4YiMBQFC09+8XpjnSK/WvvIQ8XURETexFDkBQxF1B6eDlmOFpj0xOiT2zxYTE1E5E2e/v6WtaZo7969yMzMRGJiIlQqFTZv3iw5/9BDD0GlUkl+MjIyJNdUVFRg9uzZ0Gg0iImJwbx583DlyhUf9oKCVYhaBUPfbpg25AYY+nZrdyDym7WPvFBMTUSkJLKGourqatxyyy14++23nV6TkZGB0tJS28/69esl52fPno0TJ05gx44d2LZtG/bu3YtHH+UQPymHX6zs7LCY+oBHiqmJiJRC1nWKJk+ejMmTJ7d6TXh4OHQ6ncNz3377LfLy8nDo0CEMHz4cAPDWW29hypQpeP3115GYmOjxNhN5muxrH/momJqIyN/5/ZT8PXv2ID4+HgMGDEB2djYuX75sO1dQUICYmBhbIAKAtLQ0qNVqHDhwwOlr1tbWwmw2S36I5CLb2kf11cA6lTQQjfwfIOsSAxERBSW/DkUZGRn461//il27duHVV19Ffn4+Jk+ejIaGBgCA0WhEfLy01qFTp06IjY2F0Wh0+rq5ubnQarW2n549e3q1H0StkWXtowvb7GeXzSjz+uyyBotAwZnL2HL0AgrOXA6OPeKISDH8+n8HZ86cafvz4MGDkZqair59+2LPnj2YMGFCu193yZIleOKJJ2yPzWYzgxHJxrrAZPbaI1DB8dpHHlvZWQjgs9uktUM3zgFu+1vHX7sNfrXkABGRA349UtRSnz590L17d5w+fRoAoNPpUF5eLrmmvr4eFRUVTuuQgMY6JY1GI/khkpNPVnZ2Wkztm0CUvfaIXUG50VSD7LVHkFdY6vU2EBG1xa9Hilo6f/48Ll++DL2+8QvCYDCgsrIShw8fxrBhwwAAu3fvhsViwahRo+RsKpHbMlL0mJis887KznbF1HHAvRd9UjvU1pIDKjQuOTAxWcdVrIlIVrKGoitXrthGfQCguLgYR48eRWxsLGJjY7Fs2TJkZWVBp9PhzJkzeOaZZ9CvXz+kp6cDAAYNGoSMjAw88sgjWLVqFerq6rBgwQLMnDmTM89IkaxrH3mMw5Wp/wT0e8Rz79EGd5Yc8GjfiYjcJGso+uqrr3DnnXfaHlvrfObOnYuVK1fi2LFjePfdd1FZWYnExERMmjQJr7zyCsLDw23Pee+997BgwQJMmDABarUaWVlZWLFihc/7QuR3LmwD8jOlx2RYmVr2JQeIiFwkaygaP348Wttl5NNPP23zNWJjY7Fu3TpPNotI2RwWU/8MuO2vsjRHtiUHiIjcpKiaIiJqQ9VpYGt/6bFJB4DuI+VpD5qWHDCaahzWFanQWFDu0SUHiIjaQVGzz4ioFd+8IA1E4XHAzDpZAxHQtOQAALu1mDy+5AARUQcwFBEpnXVl6hO/bjo28k9AVrnfrEztkyUHiIg6yD/+xSSi9vGTYmpXeHXJASIiD2AoIlIiPyumdpXHlxwgIvIghiIipTGfArbdJD0mczE1EVEgYCgiUpJvXpDWDkXEA9Mv+E3tEBGRkvFfUiIl8IOVqYmIAh1DEZG/O78V2HuP9JifFlMTESkZQxGRv3JUTJ30IGB4V742EREFMIYiIn/kqJg6/SDQbYQ87SEiCgJcvJHI33zzgjQQRcQ3rkzNQERE5FUcKSLyF3VXgI3R0mMj/xfo91/ytIeIKMgwFBH5AxZTExHJjqGISE5CAJ8ZgMsHmo6xmJqISBYMRURyYTE1EZFfYaE1kRy+eZ7F1EREfoYjRRQwGizC/3dgZzE1EZHfYiiigJBXWIplW4tQaqqxHdNrI7A0MxkZKXoZW9ZMO4upFRH2iIgCAEMRKV5eYSmy1x6BaHHcaKpB9tojWDlnqLzBSAjgs9HA5YNNx1wsplZE2CMiChCsKSJFa7AILNtaZBeIANiOLdtahAaLoyt8wHwKWK+WBqL0gy4Houy1RySBCGgKe3mFpZ5uLRFRUGMoIkU7WFxhFxqaEwBKTTU4WFzhu0ZZdaCY2u/DHhFRAOLtM1K08irngag913mEB4qp3Ql7hr7d2tlQIiJqjqGIFC0+OsKj13XY+Y+AvdOkx2aUAxFxbr2MX4Y9IqIAx9tnpGgjk2Kh10bA2VwsFRoLk0cmxXq3IUIAn46SBqKkB4EHhNuBCPDDsEdEFAQYikjRQtQqLM1MBgC7YGR9vDQz2btT2DtQTO2M34Q9IqIgwlBEipeRosfKOUOh00pHTXTaCO9Px/fSytR+EfaIiIKMSggR9NNXzGYztFotTCYTNBqN3M0hJ9paxNCnixw6KqYe9Weg7zyPvg3XKSIics7T398MRWAoUgK/CgceKqZ2FVe0JiJyjKHICxiK/JuzFautscBnK1Z3YGVqIiLyPE9/f3NKPvm1thYxVKFxEcOJyTq3Rk/cHn0x/wvYNkB6LP0Q0G24y+9JRET+jaGI/FpHFzF0FH52FBnduxX3qQG4/GXT44gEYPp5QM3/fIiIAgn/VSe/1pFFDB3VIcVEhaLyap3dtQ43j62tAP4hDVqWEf8LdX/XV6YmIiLl4JR88mvtXcTQ2WaqjgIR4GA/sW9ftwtEY779P4z5IIkbsRIRBSiOFJGs2qrtsS5iaDTVOKwrUqFxPaLmixi2VofUmsZbcdcQskH6/wqm+s64pej9Hx/UYP7aI5g35kakJevarEXizDEiIuVgKCLZuDLN3rqIYfbaI1ABkqDjbBHDtuqQnLk16jts6veU5Nh/nX0BO82j7K79yxdn8ZcvzrZai+RXywgQEVGbePuMZOHs9pa1tievsBQNFoGCM5dRW2/BwrT+SNCES651tmJ1ezZJ/bDvk3aBqN+xzQ4DkbP2NudK/4iIyL9wpIh8zpVp9s9+eBwvfVQEo7kpVOg0EViUdhNu7B7V6q0odzZJ1YZU4ZubZ0mOnYmZiwl7f+LS81suCwAAX/77Mp79x3GPLyNARETexZEi8jlXptlXXq2TBCIAKDPX4A87/4XwTmoY+nZzGija2kzV6tG4f9gFoj0DD6J8wP9zpRuS9paaavDH3adw+6u7MfvPB1B5zXFBd/PrDxZXuPU+RETkXQxF5HPtub0FOJgh5kTbm6kKnE29G8/pV9uOmxu6IC/1IsYPHeFyqGrpjZ2n3Kplau/fAxEReQdDEfmcO7e3WnJ1lCUjRY+Vc4ZCp5W+V1rcv3E2NVNy7Lub/obOs812xd2AfajypI78PRARkeexpoh8zjoS054ZYlaujLJkpOgxMVlnmxJ/1/fTEF19WHrRzOsYqA51+NyVc4bazR7zBEfLCBARkfwYisgnWq7X89+TB2HBhq/b/XqujrKEqFUw9FAB/+ghPdE/Bxjxx1af2zxU7Sgy4v++OOtwWQB31kNytowAERHJj6GIvM7Rej2xne1HZ1zh9ihL0WvA0cXSY9POAp17u/T0ELUKhr7dYOjbDSOTYu36odNGYOaIXnhj579cej0d1ykiIvJbDEXkVdb1elqOplRUO5+d5YxboyxCAOtblMyFxgA/+cHt97VqeTvOuiwAAGw4VOJ01W2gcc+1t2cNxehWZs0REZG8WGhNXtPe7TaccbZYo51LBfaBaNyWDgUiK+vI0bQhN9iWBWhrtpsKwPIZgzGmf3cGIiIiP8aRIvKa9m63ATTdJnv9vlvwn+pa1/cN+3Q0cPmA9NjM64CDYmpPclaYzdtlRETKwVBEXtPedXia3yYb07+7a0+qrbDb1R43LQCGv9WuNrSHs9trHB0iIlIGhiLyGldniMV2DkNF9XXbY7dHVxwWU38PdO7lalM9xnp7jYiIlIehiDym5bT7Yb27Qq+NcFqAbL1Flv/0nTj8/Q/uj644KqYO6wrcx+0ziIjIfQxF5BGOpt3rtRG45xY9/rS32OH6PkDjLbKwH/cyc8ulAmDHbdJj47YAPe5x+pSWoY23toiIqDmGIuowZ9PujaYa/GlvMR4dl4SPvil1uwDZaYhpRzG1s9DGImgiIrJiKCKb9oyktDbtXqBxROijb0rdvkXmKMQM6Hodn/acIb3wpseA4StabWNroS177RHXpvkTEVHAYygiAO0fSWlr2r11A9e/FZzFQ2OSXLpd5SjE/CLuAyzRr5Fe6EIxtSuhbdnWIkxM1vFWGhFRkOPijWQLIS3DjXUkJa+w1OlzXZ12/8rH3+L2V3e3+lqAoxAjcDb1bkkgMjdEo2GmxaXZZa6GtoPFLM4mIgp2DEVBrq2RFKBxJKXB4nhdalen3QNth6wGi8CaL4ptIWZo1Lc4m5opuWZe8QtIPbHe5RDjamhr75pKREQUOHj7LMi5M5LiaIbYyKTYVqfdt3wtZ7erWt6+29xvEYZEnZI8v9+xzaj/8VfW1RDjamhzJ9wREVFg4khRkOvoSEpr+3454uh2VfPbd9qQKpxNvVsSiFb/JxM3HttmC0SA6yHGGtqctU2Fxtop68auREQUvBiKgpwnRlKs+37ptK6PtlhDVvPbd7+I+wDf3DxLct1t3/4fll38heRY16hQl0NMW5u1Ao1rJbHImoiIZA1Fe/fuRWZmJhITE6FSqbB582bJeSEEXnzxRej1ekRGRiItLQ2nTklvqVRUVGD27NnQaDSIiYnBvHnzcOXKFR/2QtnaGkkBgNjOoTCaa1Bw5rLT2qKMFD32Lb4LL0wd5NL7WkNW4+27a3bF1JX1XXDjsW24WBdv99y2btM5apuj0KbTRnA6PhER2cgaiqqrq3HLLbfg7bffdnj+tddew4oVK7Bq1SocOHAAnTt3Rnp6Ompqmm7lzJ49GydOnMCOHTuwbds27N27F48++qivuqB4rtz+qqiuw6L3j2LW/37Z6gyyELUKD41JQkxU6zvSxzQb6an+T5HDYuohRRucPr/yap3bs8WsoW39I6Px5swhWP/IaOxbfBcDERER2aiEEO7+j7dXqFQqbNq0CdOnTwfQOEqUmJiIJ598Ek899RQAwGQyISEhAWvWrMHMmTPx7bffIjk5GYcOHcLw4cMBAHl5eZgyZQrOnz+PxMREh+9VW1uL2tpa22Oz2YyePXvCZDJBo9F4t6N+ytE6RY5Yg9PbDwyFNjIUBf/+DwQAbXgoKmuuQwUV1hScRXVtg9PX6BwegmNL0xFy7DmgaLnkXPNi6ta8OXMIpg25oc3riIgocJnNZmi1Wo99f/vt7LPi4mIYjUakpaXZjmm1WowaNQoFBQWYOXMmCgoKEBMTYwtEAJCWlga1Wo0DBw7g3nvvdfjaubm5WLZsmdf7oCQZKXpMTNbhYHEFjKZreOXjbyU711tZE3TOOvsVol1WV4WQDdJByv9nnI23ymc5eYI9zhYjIiJP89tCa6PRCABISEiQHE9ISLCdMxqNiI+X1px06tQJsbGxtmscWbJkCUwmk+3n3LlzHm69MoWoVTD07QadNtJhIGquvYFokqYAJ1J+Kjl264n3XA5EnC1GRETe4rcjRd4UHh6O8PBwuZvht7yzkKHA1n4LMTjqjO3I3yvS8Mz5hW6/EmeLERGRN/htKNLpdACAsrIy6PVNxbBlZWUYMmSI7Zry8nLJ8+rr61FRUWF7PrnP07em+oSfx+4B8yXH7j71BxRe6+f2a2nbKOImIiJqL7+9fZaUlASdToddu3bZjpnNZhw4cAAGgwEAYDAYUFlZicOHD9uu2b17NywWC0aNGuXzNgcKV6bpu+oZ3RpJIDLWxaLPsS3tCkQAYLpa1+Z+bERERO0h60jRlStXcPr0advj4uJiHD16FLGxsejVqxcWLlyIX//61+jfvz+SkpLwwgsvIDEx0TZDbdCgQcjIyMAjjzyCVatWoa6uDgsWLMDMmTOdzjyjtlmn6WevPdLu1+isvmpXO/T0uV9h4w8TO9Q27mxPRETeImso+uqrr3DnnXfaHj/xxBMAgLlz52LNmjV45plnUF1djUcffRSVlZW4/fbbkZeXh4iIpts77733HhYsWIAJEyZArVYjKysLK1as8HlfApE2MhSV1+rcft4kTQH+dONvJMduPfEefmjQeqRdbe3HRkRE1B5+s06RnDy9zoHSWfcic/8Xw76Y+v2KiVh8/le2x2oV4GRRbLdxrSIiouDm6e9vv60pInk034vMHX3Cz+NsaqYkEN196g+SQAQAcw29oYLzfch+PuZGt7cKISIi8gS/nX1G8mjci8y9KfnP6Nbgl/Ef2B4b62Jx27erYUGI3bWTbtZjVJ9udqtn67QRWJqZjIwUPRosAn/eVwyjqcZhOFP9eD3XKiIiIk9iKCKbBovAF6f/4/L17hZT6zThGJkUixC1yrZ6dnlVDeKjI2zHAWmhtwrShSK5sz0REXkLQ1GQabAI21Ye/7lyHZXXrkMFoJNajQ2HzsFodm2UqD3F1C/dc7Mk+LRWJG3d2b61ESUiIiJPYigKIq5u+tq6toupW4qJCsXyGYPdDjLN92NzNKJERETkSQxFQaL9M8qatGdl6pzxffHEpAHtDjJtjSgRERF5CkNREGjvjLLmWhZTX7zeHbd/9xeHxdTN3d4/jiM7RESkCAxFQaA9M8qsHBVTP3VuIT74Ia3V53GGGBERKQ1DURBo76737V2ZmjPEiIhIiRiKgoD7ixy6X0zdHGeIERGREjEUBQHrrveu3ELrG34OuwZkS461VUzdXGznUOQ/fSfCOnGxdCIiUhZ+cwUB62KIbd3IWqxbIwlEF693R59jW1wORABQUV2Hw9//0M6WEhERyYehKEhkpOjx9gO3OgxGndVXcTb1bmQ3m1321LmFuO27NW3OLnOkvTVMREREcuLtsyDStXO43bT89hZTt4YbtRIRkRIxFAUR6RYeHSumdoTT8ImISMkYigKcda+z8qoaHPm+AoDjYuqpp/6AE27UDrXk6jT85u3hth1ERORPGIoCSMvAcbmqFi9uLURFdZ3tmsW6NZLaIVdXpm6LK9PwHe29puf0fSIi8hMMRQGirc1e27syNQB0jQpFeCc1jOZa2zG9NgIzR/TCjd2jXBrxcbb3mtFUg+y1R7ByzlAGIyIikhVDUQBoa7PXjhRTqwDkzhjcod3qW9t7Tfz4Hsu2FmFiso630oiISDYMRQrX+mavAtv6L0RKZFMx9frLk7DkwuMuvbY2shNezUq1jeC0d7f6tvZeEwBKTTU4WFzR7vcgIiLqKIYihfvyzGWHgcMTxdTvzB6GMf26d7iNrq5bxPWNiIhITgxFCpZXWIrF/zhud/xZ3WrMj/+H7XF7iqn12giM7uOZURtX1y3i+kZERCQnhiKF2n6sFL9cd0RyrCPF1Fbe2OHeuvea0VTj8DYf1zciIiJ/wG0+FGj7sYvIWS8NROma/XaB6NYT77kViIDGcOLpmWDWvdcA2G0z4o0QRkRE1B4cKVKYvMJS/HLd182OCHzc/1e4OfLftiPuFFMDQFSYGr+5NxU6jfcWU8xI0WPlnKF2ywa4sr4RERGRLzAUKUiDReDZD5tqiDy1MvXV6xboNBFen/mVkaLv0NR+IiIib2IoUpAv/30ZlVcbV6f2RDF1c76a+RWiVnHaPRER+SWGIgXZf/o/Doupnzy3CP/4YUKHXpszv4iIKNgxFClItx+24UTK05JjQ06sQ2WDxulztJGdoFKpYLpax5lfRERErWAoUoCGBgtqtg7Bz0VTPVFbxdRTUhIwe9SNGN23G3YUGZG99ghUgCQYceYXERFRE4YiP5d/aC/uOHUHOjc71lYx9cIJ/bFw4k22x5z5RURE1DaGIj/25T9+jjtqV9seu1JM3TUqFI9N6G93nDO/iIiIWsdQJLMGi7APKg1VwEYtRje7ztVi6t9MH+w06HDmFxERkXMMRTLKKyy1u6U1U3cIy+OXSa5rq5i6uac++Aanyq9gwV39OApERETkBpUQwtGkpKBiNpuh1WphMpmg0bgWPjoqr7AU2WuPNCt87vjK1M3FRIVi+YzBrBciIqKA5envb+59JoMGi8CyrUW2QNQ3/BzOpmZKAtHUU39odyACgMqrdZi/9gjyCks72FoiIqLgwFAkg4PFFbZbZs/q/k+yVceF63Hoc2yL21t1OLNsaxEaLEE/GEhERNQm1hTJoLyqBl3UV1HohZWpWyo11eBgcQULrImIiNrAUOQjzWeZdS77CIUpv5Scd6eY2l2+2teMiIhIyRiKfKBpltk1bO//OJIji23nOlJM7Srua0ZERNQ2hiIvs84y6xN+DmdTsyXn2lqZuqO4rxkREZHrGIq8yDrLbLHu/zA//kPb8QvX4zD2uz/DghCoVYC7ddARnVSoqW/9SdzXjIiIyD0MRV50+NT3KOidJjnWspjaIoDoiE6oqql3+XXbCkQA9zUjIiJyF0ORF/UrmiF57KyY2p1A1JaYqFC8PWsoRvftxhEiIiIiN3CdIi+6FjMOQGMx9Y3HtnltdllzlVfroFarGIiIiIjcxJEiL9Ld8QZGL78bRnOtT993Z5GR6xIRERG5iSNFXtJgEfjj7tMwX6vz2GuOvLGrS9dtOnqBq1gTERG5iSNFXpBXWIpnPzyOyqueC0QAMLpPN5y+VI2K6uutXldRXcdVrImIiNzEkSIPyyssxfy1RzweiADg71+dwz23uDabjKtYExERuYehyIOs6xJ5i9Fci55do1y6lqtYExERuYehyIMOFleg1OTdEZrYLuHQa50HHhUAPVexJiIichtDkQf54paVTtO4KKMKTatWW3EVayIiovZjKPIgb96yaj4ClJGix8o5Q6FrMWKk00Zg5ZyhXMWaiIioHTj7zINGJsVCr43w+C00RyNAGSl6TEzW4WBxBcqrahAf3RiYOEJERETUPgxFHhSiVmFpZjLmrz3i0dd1to9ZiFrFafdEREQewttnHpaRosc7DwyFykMDNovS+mPf4rt4S4yIiMjLGIq8YEqqHm/PurXDr6MCsOHQuY43iIiIiNrEUOQlU1ITkX5zQodeQwAoNdXgYHGFZxpFRERETvl1KHrppZegUqkkPwMHDrSdr6mpQU5ODrp164YuXbogKysLZWVlMrZYqn98F4+8DlenJiIi8j6/DkUAcPPNN6O0tNT2s2/fPtu5RYsWYevWrdi4cSPy8/Nx8eJFzJgxQ8bWShn6dPfI63B1aiIiIu/z+9lnnTp1gk6nsztuMpnwl7/8BevWrcNdd90FAFi9ejUGDRqEL7/8EqNHj/Z1U+2M7tsNMVGhre6DpkLjbTJn53RcnZqIiMgn/H6k6NSpU0hMTESfPn0we/ZslJSUAAAOHz6Muro6pKWl2a4dOHAgevXqhYKCglZfs7a2FmazWfLjDSFqFZbPGNzqNY+OS+Lq1ERERH7Ar0PRqFGjsGbNGuTl5WHlypUoLi7G2LFjUVVVBaPRiLCwMMTExEiek5CQAKPR2Orr5ubmQqvV2n569uzptT5kpOixas5Q6DThkuM6TThWzRmKJVOSuTo1ERGRH1AJIZzdvfE7lZWV6N27N37/+98jMjISDz/8MGprayXXjBw5EnfeeSdeffVVp69TW1sreZ7ZbEbPnj1hMpmg0Wi80vYGi2h19em2zhMREZGU2WyGVqv12Pe339cUNRcTE4ObbroJp0+fxsSJE3H9+nVUVlZKRovKysoc1iA1Fx4ejvDw8Fav8bS2Vp/m6tRERETy8uvbZy1duXIFZ86cgV6vx7BhwxAaGopdu3bZzp88eRIlJSUwGAwytpKIiIiUyK9Hip566ilkZmaid+/euHjxIpYuXYqQkBDMmjULWq0W8+bNwxNPPIHY2FhoNBo89thjMBgMfjHzjIiIiJTFr0PR+fPnMWvWLFy+fBlxcXG4/fbb8eWXXyIuLg4A8MYbb0CtViMrKwu1tbVIT0/HO++8I3OriYiISIkUVWjtLZ4u1CIiIiLv8/T3t6JqioiIiIi8haGIiIiICAxFRERERAAYioiIiIgAMBQRERERAfDzKfm+Yp2A562NYYmIiMjzrN/bnppIz1AEoKqqCgC8ujEsEREReUdVVRW0Wm2HX4frFAGwWCy4ePEioqOjoVJ5fhNW64az586dC+h1kIKln0Dw9DVY+gkET1+DpZ8A+xqIWvZTCIGqqiokJiZCre54RRBHigCo1Wr06NHD6++j0WgC+pfVKlj6CQRPX4Oln0Dw9DVY+gmwr4GoeT89MUJkxUJrIiIiIjAUEREREQFgKPKJ8PBwLF26FOHh4XI3xauCpZ9A8PQ1WPoJBE9fg6WfAPsaiLzdTxZaExEREYEjRUREREQAGIqIiIiIADAUEREREQFgKCIiIiICwFDkMS+99BJUKpXkZ+DAgbbzNTU1yMnJQbdu3dClSxdkZWWhrKxMxha7bu/evcjMzERiYiJUKhU2b94sOS+EwIsvvgi9Xo/IyEikpaXh1KlTkmsqKiowe/ZsaDQaxMTEYN68ebhy5YoPe9G2tvr50EMP2X3GGRkZkmuU0M/c3FyMGDEC0dHRiI+Px/Tp03Hy5EnJNa78vpaUlGDq1KmIiopCfHw8nn76adTX1/uyK21ypa/jx4+3+1znz58vucbf+7py5UqkpqbaFrQzGAz45JNPbOcD5fME2u5rIHyejixfvhwqlQoLFy60HQukz7U5R3312ecqyCOWLl0qbr75ZlFaWmr7uXTpku38/PnzRc+ePcWuXbvEV199JUaPHi1uu+02GVvsuu3bt4v//u//Fh9++KEAIDZt2iQ5v3z5cqHVasXmzZvFN998I+655x6RlJQkrl27ZrsmIyND3HLLLeLLL78U//znP0W/fv3ErFmzfNyT1rXVz7lz54qMjAzJZ1xRUSG5Rgn9TE9PF6tXrxaFhYXi6NGjYsqUKaJXr17iypUrtmva+n2tr68XKSkpIi0tTXz99ddi+/btonv37mLJkiVydMkpV/p6xx13iEceeUTyuZpMJtt5JfT1o48+Eh9//LH417/+JU6ePCmee+45ERoaKgoLC4UQgfN5CtF2XwPh82zp4MGD4sYbbxSpqaniV7/6le14IH2uVs766qvPlaHIQ5YuXSpuueUWh+cqKytFaGio2Lhxo+3Yt99+KwCIgoICH7XQM1qGBYvFInQ6nfjd735nO1ZZWSnCw8PF+vXrhRBCFBUVCQDi0KFDtms++eQToVKpxIULF3zWdnc4C0XTpk1z+hwl9lMIIcrLywUAkZ+fL4Rw7fd1+/btQq1WC6PRaLtm5cqVQqPRiNraWt92wA0t+ypE4z+2zf/xbUmpfe3atav485//HNCfp5W1r0IE3udZVVUl+vfvL3bs2CHpWyB+rs76KoTvPlfePvOgU6dOITExEX369MHs2bNRUlICADh8+DDq6uqQlpZmu3bgwIHo1asXCgoK5GquRxQXF8NoNEr6ptVqMWrUKFvfCgoKEBMTg+HDh9uuSUtLg1qtxoEDB3ze5o7Ys2cP4uPjMWDAAGRnZ+Py5cu2c0rtp8lkAgDExsYCcO33taCgAIMHD0ZCQoLtmvT0dJjNZpw4ccKHrXdPy75avffee+jevTtSUlKwZMkSXL161XZOaX1taGjAhg0bUF1dDYPBENCfZ8u+WgXS55mTk4OpU6dKPj8gMP87ddZXK198rtwQ1kNGjRqFNWvWYMCAASgtLcWyZcswduxYFBYWwmg0IiwsDDExMZLnJCQkwGg0ytNgD7G2v/kvovWx9ZzRaER8fLzkfKdOnRAbG6uo/mdkZGDGjBlISkrCmTNn8Nxzz2Hy5MkoKChASEiIIvtpsViwcOFCjBkzBikpKQDg0u+r0Wh0+Jlbz/kjR30FgAceeAC9e/dGYmIijh07hsWLF+PkyZP48MMPASinr8ePH4fBYEBNTQ26dOmCTZs2ITk5GUePHg24z9NZX4HA+TwBYMOGDThy5AgOHTpkdy7Q/jttra+A7z5XhiIPmTx5su3PqampGDVqFHr37o2///3viIyMlLFl5CkzZ860/Xnw4MFITU1F3759sWfPHkyYMEHGlrVfTk4OCgsLsW/fPrmb4nXO+vroo4/a/jx48GDo9XpMmDABZ86cQd++fX3dzHYbMGAAjh49CpPJhA8++ABz585Ffn6+3M3yCmd9TU5ODpjP89y5c/jVr36FHTt2ICIiQu7meJUrffXV58rbZ14SExODm266CadPn4ZOp8P169dRWVkpuaasrAw6nU6eBnqItf0tZzw075tOp0N5ebnkfH19PSoqKhTd/z59+qB79+44ffo0AOX1c8GCBdi2bRs+//xz9OjRw3bcld9XnU7n8DO3nvM3zvrqyKhRowBA8rkqoa9hYWHo168fhg0bhtzcXNxyyy148803A/LzdNZXR5T6eR4+fBjl5eUYOnQoOnXqhE6dOiE/Px8rVqxAp06dkJCQEDCfa1t9bWhosHuOtz5XhiIvuXLlCs6cOQO9Xo9hw4YhNDQUu3btsp0/efIkSkpKJPfBlSgpKQk6nU7SN7PZjAMHDtj6ZjAYUFlZicOHD9uu2b17NywWi+0XW4nOnz+Py5cvQ6/XA1BOP4UQWLBgATZt2oTdu3cjKSlJct6V31eDwYDjx49LQuCOHTug0WhstzH8QVt9deTo0aMAIPlcldDXliwWC2prawPq83TG2ldHlPp5TpgwAcePH8fRo0dtP8OHD8fs2bNtfw6Uz7WtvoaEhNg9x2ufq/v14eTIk08+Kfbs2SOKi4vFF198IdLS0kT37t1FeXm5EKJx6mSvXr3E7t27xVdffSUMBoMwGAwyt9o1VVVV4uuvvxZff/21ACB+//vfi6+//lp8//33QojGKfkxMTFiy5Yt4tixY2LatGkOp+Tfeuut4sCBA2Lfvn2if//+fjdVvbV+VlVViaeeekoUFBSI4uJisXPnTjF06FDRv39/UVNTY3sNJfQzOztbaLVasWfPHsn01qtXr9quaev31Tr9ddKkSeLo0aMiLy9PxMXF+d1U37b6evr0afHyyy+Lr776ShQXF4stW7aIPn36iHHjxtleQwl9ffbZZ0V+fr4oLi4Wx44dE88++6xQqVTis88+E0IEzucpROt9DZTP05mWM7AC6XNtqXlfffm5MhR5yP333y/0er0ICwsTN9xwg7j//vvF6dOnbeevXbsmfvnLX4quXbuKqKgoce+994rS0lIZW+y6zz//XACw+5k7d64QonFa/gsvvCASEhJEeHi4mDBhgjh58qTkNS5fvixmzZolunTpIjQajXj44YdFVVWVDL1xrrV+Xr16VUyaNEnExcWJ0NBQ0bt3b/HII49Ipn8KoYx+OuojALF69WrbNa78vp49e1ZMnjxZREZGiu7du4snn3xS1NXV+bg3rWurryUlJWLcuHEiNjZWhIeHi379+omnn35asv6JEP7f15///Oeid+/eIiwsTMTFxYkJEybYApEQgfN5CtF6XwPl83SmZSgKpM+1peZ99eXnqhJCCNfHlYiIiIgCE2uKiIiIiMBQRERERASAoYiIiIgIAEMREREREQCGIiIiIiIADEVEREREABiKiIiIiAAwFBEREREBYCgiIuqQhx56CNOnT5e7GUTkAQxFROQVDz30EFQqFZYvXy45vnnzZqhUKpla1X5nz56FSqWybURJRIGHoYiIvCYiIgKvvvoqfvjhB7mbQkTUJoYiIvKatLQ06HQ65ObmOr1m3759GDt2LCIjI9GzZ088/vjjqK6uBgD88Y9/REpKiu1a6yjTqlWrJO/x/PPP2x5v3boVI0aMQEREBLp37457773Xdu5vf/sbhg8fjujoaOh0OjzwwAMoLy+3nf/hhx8we/ZsxMXFITIyEv3798fq1asBAElJSQCAW2+9FSqVCuPHj3fYH4vFgtzcXCQlJSEyMhK33HILPvjgAzf+1ohILgxFROQ1ISEh+O1vf4u33noL58+ftzt/5swZZGRkICsrC8eOHcP777+Pffv2YcGCBQCAO+64A0VFRbh06RIAID8/H927d8eePXsAAHV1dSgoKLAFlI8//hj33nsvpkyZgq+//hq7du3CyJEjbe9XV1eHV155Bd988w02b96Ms2fP4qGHHrKdf+GFF1BUVIRPPvkE3377LVauXInu3bsDAA4ePAgA2LlzJ0pLS/Hhhx867HNubi7++te/YtWqVThx4gQWLVqEOXPmID8/v0N/l0TkA4KIyAvmzp0rpk2bJoQQYvTo0eLnP/+5EEKITZs2Ces/PfPmzROPPvqo5Hn//Oc/hVqtFteuXRMWi0V069ZNbNy4UQghxJAhQ0Rubq7Q6XRCCCH27dsnQkNDRXV1tRBCCIPBIGbPnu1yGw8dOiQAiKqqKiGEEJmZmeLhhx92eG1xcbEAIL7++mun/aypqRFRUVFi//79kmvmzZsnZs2a5XK7iEgeHCkiIq979dVX8e677+Lbb7+VHP/mm2+wZs0adOnSxfaTnp4Oi8WC4uJiqFQqjBs3Dnv27EFlZSWKiorwy1/+ErW1tfjuu++Qn5+PESNGICoqCgBw9OhRTJgwwWk7Dh8+jMzMTPTq1QvR0dG44447AAAlJSUAgOzsbGzYsAFDhgzBM888g/3797vVz9OnT+Pq1auYOHGipE9//etfcebMGbdei4h8r5PcDSCiwDdu3Dikp6djyZIlkttVV65cwS9+8Qs8/vjjds/p1asXAGD8+PH405/+hH/+85+49dZbodFobEEpPz/fFmwAIDIy0mkbqqurkZ6ejvT0dLz33nuIi4tDSUkJ0tPTcf36dQDA5MmT8f3332P79u3YsWMHJkyYgJycHLz++usu9fPKlSsAGm/j3XDDDZJz4eHhLr0GEcmHoYiIfGL58uUYMmQIBgwYYDs2dOhQFBUVoV+/fk6fd8cdd2DhwoXYuHGjrXZo/Pjx2LlzJ7744gs8+eSTtmtTU1Oxa9cuPPzww3av89133+Hy5ctYvnw5evbsCQD46quv7K6Li4vD3LlzMXfuXIwdOxZPP/00Xn/9dYSFhQEAGhoanLY1OTkZ4eHhKCkpkYQ1IlIGhiIi8onBgwdj9uzZWLFihe3Y4sWLMXr0aCxYsAD/9V//hc6dO6OoqAg7duzAH//4RwCNQadr165Yt24dtm3bBqAxFD311FNQqVQYM2aM7fWWLl2KCRMmoG/fvpg5cybq6+uxfft2LF68GL169UJYWBjeeustzJ8/H4WFhXjllVckbXzxxRcxbNgw3HzzzaitrcW2bdswaNAgAEB8fDwiIyORl5eHHj16ICIiAlqtVvL86OhoPPXUU1i0aBEsFgtuv/12mEwmfPHFF9BoNJg7d65X/m6JyDNYU0REPvPyyy/DYrHYHqempiI/Px//+te/MHbsWNx666148cUXkZiYaLtGpVJh7NixUKlUuP32223P02g0GD58ODp37my7dvz48di4cSM++ugjDBkyBHfddZdt1lhcXBzWrFmDjRs3Ijk5GcuXL7e7LRYWFoYlS5YgNTUV48aNQ0hICDZs2AAA6NSpE1asWIH/+Z//QWJiIqZNm+awj6+88gpeeOEF5ObmYtCgQcjIyMDHH39sm9JPRP5LJYQQcjeCiIiISG4cKSIiIiICQxERERERAIYiIiIiIgAMRUREREQAGIqIiIiIADAUEREREQFgKCIiIiICwFBEREREBIChiIiIiAgAQxERERERAIYiIiIiIgDA/wfaBA6fb5vNOwAAAABJRU5ErkJggg==",
220
- "text/plain": [
221
- "<Figure size 640x480 with 1 Axes>"
222
- ]
223
- },
224
- "metadata": {},
225
- "output_type": "display_data"
226
- }
227
- ],
228
  "source": [
229
  "def myfunc(x):\n",
230
  " return slope * x + intercept\n",
 
2
  "cells": [
3
  {
4
  "cell_type": "code",
5
+ "execution_count": 7,
6
  "metadata": {},
7
  "outputs": [],
8
  "source": [
9
  "import matplotlib.pyplot as plt\n",
10
  "import pandas as pd\n",
11
+ "import plotly.express as px\n",
12
  "from scipy import stats"
13
  ]
14
  },
15
+ {
16
+ "cell_type": "code",
17
+ "execution_count": 2,
18
+ "metadata": {},
19
+ "outputs": [],
20
+ "source": [
21
+ "df_coal = pd.read_csv(\"../coal-price-data/coal_price_data.csv\")"
22
+ ]
23
+ },
24
  {
25
  "cell_type": "code",
26
  "execution_count": 3,
 
171
  }
172
  ],
173
  "source": [
 
174
  "df_coal"
175
  ]
176
  },
177
+ {
178
+ "cell_type": "code",
179
+ "execution_count": 5,
180
+ "metadata": {},
181
+ "outputs": [],
182
+ "source": [
183
+ "df_coal[\"date\"] = pd.to_datetime(df_coal[\"date\"], format=\"%b-%y\")"
184
+ ]
185
+ },
186
+ {
187
+ "cell_type": "code",
188
+ "execution_count": 6,
189
+ "metadata": {},
190
+ "outputs": [
191
+ {
192
+ "data": {
193
+ "text/html": [
194
+ "<div>\n",
195
+ "<style scoped>\n",
196
+ " .dataframe tbody tr th:only-of-type {\n",
197
+ " vertical-align: middle;\n",
198
+ " }\n",
199
+ "\n",
200
+ " .dataframe tbody tr th {\n",
201
+ " vertical-align: top;\n",
202
+ " }\n",
203
+ "\n",
204
+ " .dataframe thead th {\n",
205
+ " text-align: right;\n",
206
+ " }\n",
207
+ "</style>\n",
208
+ "<table border=\"1\" class=\"dataframe\">\n",
209
+ " <thead>\n",
210
+ " <tr style=\"text-align: right;\">\n",
211
+ " <th></th>\n",
212
+ " <th>year</th>\n",
213
+ " <th>date</th>\n",
214
+ " <th>newcastle</th>\n",
215
+ " <th>HBA</th>\n",
216
+ " <th>ICI_1</th>\n",
217
+ " </tr>\n",
218
+ " </thead>\n",
219
+ " <tbody>\n",
220
+ " <tr>\n",
221
+ " <th>0</th>\n",
222
+ " <td>2023</td>\n",
223
+ " <td>2023-12-01</td>\n",
224
+ " <td>146.25</td>\n",
225
+ " <td>117.38</td>\n",
226
+ " <td>118.48</td>\n",
227
+ " </tr>\n",
228
+ " <tr>\n",
229
+ " <th>1</th>\n",
230
+ " <td>2023</td>\n",
231
+ " <td>2023-11-01</td>\n",
232
+ " <td>132.15</td>\n",
233
+ " <td>139.80</td>\n",
234
+ " <td>118.75</td>\n",
235
+ " </tr>\n",
236
+ " <tr>\n",
237
+ " <th>2</th>\n",
238
+ " <td>2023</td>\n",
239
+ " <td>2023-10-01</td>\n",
240
+ " <td>121.10</td>\n",
241
+ " <td>123.96</td>\n",
242
+ " <td>121.70</td>\n",
243
+ " </tr>\n",
244
+ " <tr>\n",
245
+ " <th>3</th>\n",
246
+ " <td>2023</td>\n",
247
+ " <td>2023-09-01</td>\n",
248
+ " <td>160.01</td>\n",
249
+ " <td>133.13</td>\n",
250
+ " <td>116.50</td>\n",
251
+ " </tr>\n",
252
+ " <tr>\n",
253
+ " <th>4</th>\n",
254
+ " <td>2023</td>\n",
255
+ " <td>2023-08-01</td>\n",
256
+ " <td>156.00</td>\n",
257
+ " <td>179.90</td>\n",
258
+ " <td>114.57</td>\n",
259
+ " </tr>\n",
260
+ " <tr>\n",
261
+ " <th>...</th>\n",
262
+ " <td>...</td>\n",
263
+ " <td>...</td>\n",
264
+ " <td>...</td>\n",
265
+ " <td>...</td>\n",
266
+ " <td>...</td>\n",
267
+ " </tr>\n",
268
+ " <tr>\n",
269
+ " <th>140</th>\n",
270
+ " <td>2012</td>\n",
271
+ " <td>2012-04-01</td>\n",
272
+ " <td>100.75</td>\n",
273
+ " <td>105.61</td>\n",
274
+ " <td>106.26</td>\n",
275
+ " </tr>\n",
276
+ " <tr>\n",
277
+ " <th>141</th>\n",
278
+ " <td>2012</td>\n",
279
+ " <td>2012-03-01</td>\n",
280
+ " <td>107.00</td>\n",
281
+ " <td>112.87</td>\n",
282
+ " <td>111.01</td>\n",
283
+ " </tr>\n",
284
+ " <tr>\n",
285
+ " <th>142</th>\n",
286
+ " <td>2012</td>\n",
287
+ " <td>2012-02-01</td>\n",
288
+ " <td>112.10</td>\n",
289
+ " <td>111.58</td>\n",
290
+ " <td>116.55</td>\n",
291
+ " </tr>\n",
292
+ " <tr>\n",
293
+ " <th>143</th>\n",
294
+ " <td>2012</td>\n",
295
+ " <td>2012-01-01</td>\n",
296
+ " <td>117.45</td>\n",
297
+ " <td>109.29</td>\n",
298
+ " <td>115.64</td>\n",
299
+ " </tr>\n",
300
+ " <tr>\n",
301
+ " <th>144</th>\n",
302
+ " <td>2011</td>\n",
303
+ " <td>2011-12-01</td>\n",
304
+ " <td>112.25</td>\n",
305
+ " <td>112.67</td>\n",
306
+ " <td>113.00</td>\n",
307
+ " </tr>\n",
308
+ " </tbody>\n",
309
+ "</table>\n",
310
+ "<p>145 rows × 5 columns</p>\n",
311
+ "</div>"
312
+ ],
313
+ "text/plain": [
314
+ " year date newcastle HBA ICI_1\n",
315
+ "0 2023 2023-12-01 146.25 117.38 118.48\n",
316
+ "1 2023 2023-11-01 132.15 139.80 118.75\n",
317
+ "2 2023 2023-10-01 121.10 123.96 121.70\n",
318
+ "3 2023 2023-09-01 160.01 133.13 116.50\n",
319
+ "4 2023 2023-08-01 156.00 179.90 114.57\n",
320
+ ".. ... ... ... ... ...\n",
321
+ "140 2012 2012-04-01 100.75 105.61 106.26\n",
322
+ "141 2012 2012-03-01 107.00 112.87 111.01\n",
323
+ "142 2012 2012-02-01 112.10 111.58 116.55\n",
324
+ "143 2012 2012-01-01 117.45 109.29 115.64\n",
325
+ "144 2011 2011-12-01 112.25 112.67 113.00\n",
326
+ "\n",
327
+ "[145 rows x 5 columns]"
328
+ ]
329
+ },
330
+ "execution_count": 6,
331
+ "metadata": {},
332
+ "output_type": "execute_result"
333
+ }
334
+ ],
335
+ "source": [
336
+ "df_coal"
337
+ ]
338
+ },
339
+ {
340
+ "cell_type": "code",
341
+ "execution_count": 8,
342
+ "metadata": {},
343
+ "outputs": [],
344
+ "source": [
345
+ "y = \"newcastle\""
346
+ ]
347
+ },
348
+ {
349
+ "cell_type": "code",
350
+ "execution_count": 10,
351
+ "metadata": {},
352
+ "outputs": [],
353
+ "source": [
354
+ "fig = px.line(df_coal, x=\"date\", y=y, labels={\"Month\": \"Date\"})"
355
+ ]
356
+ },
357
+ {
358
+ "cell_type": "code",
359
+ "execution_count": 14,
360
+ "metadata": {},
361
+ "outputs": [
362
+ {
363
+ "data": {
364
+ "application/vnd.plotly.v1+json": {
365
+ "config": {
366
+ "plotlyServerURL": "https://plot.ly"
367
+ },
368
+ "data": [
369
+ {
370
+ "hovertemplate": "date=%{x}<br>newcastle=%{y}<extra></extra>",
371
+ "legendgroup": "",
372
+ "line": {
373
+ "color": "#636efa",
374
+ "dash": "solid"
375
+ },
376
+ "marker": {
377
+ "symbol": "circle"
378
+ },
379
+ "mode": "lines",
380
+ "name": "",
381
+ "orientation": "v",
382
+ "showlegend": false,
383
+ "type": "scatter",
384
+ "x": [
385
+ "2023-12-01T00:00:00",
386
+ "2023-11-01T00:00:00",
387
+ "2023-10-01T00:00:00",
388
+ "2023-09-01T00:00:00",
389
+ "2023-08-01T00:00:00",
390
+ "2023-07-01T00:00:00",
391
+ "2023-06-01T00:00:00",
392
+ "2023-05-01T00:00:00",
393
+ "2023-04-01T00:00:00",
394
+ "2023-03-01T00:00:00",
395
+ "2023-02-01T00:00:00",
396
+ "2023-01-01T00:00:00",
397
+ "2022-12-01T00:00:00",
398
+ "2022-11-01T00:00:00",
399
+ "2022-10-01T00:00:00",
400
+ "2022-09-01T00:00:00",
401
+ "2022-08-01T00:00:00",
402
+ "2022-07-01T00:00:00",
403
+ "2022-06-01T00:00:00",
404
+ "2022-05-01T00:00:00",
405
+ "2022-04-01T00:00:00",
406
+ "2022-03-01T00:00:00",
407
+ "2022-02-01T00:00:00",
408
+ "2022-01-01T00:00:00",
409
+ "2021-12-01T00:00:00",
410
+ "2021-11-01T00:00:00",
411
+ "2021-10-01T00:00:00",
412
+ "2021-09-01T00:00:00",
413
+ "2021-08-01T00:00:00",
414
+ "2021-07-01T00:00:00",
415
+ "2021-06-01T00:00:00",
416
+ "2021-05-01T00:00:00",
417
+ "2021-04-01T00:00:00",
418
+ "2021-03-01T00:00:00",
419
+ "2021-02-01T00:00:00",
420
+ "2021-01-01T00:00:00",
421
+ "2020-12-01T00:00:00",
422
+ "2020-11-01T00:00:00",
423
+ "2020-10-01T00:00:00",
424
+ "2020-09-01T00:00:00",
425
+ "2020-08-01T00:00:00",
426
+ "2020-07-01T00:00:00",
427
+ "2020-06-01T00:00:00",
428
+ "2020-05-01T00:00:00",
429
+ "2020-04-01T00:00:00",
430
+ "2020-03-01T00:00:00",
431
+ "2020-02-01T00:00:00",
432
+ "2020-01-01T00:00:00",
433
+ "2019-12-01T00:00:00",
434
+ "2019-11-01T00:00:00",
435
+ "2019-10-01T00:00:00",
436
+ "2019-09-01T00:00:00",
437
+ "2019-08-01T00:00:00",
438
+ "2019-07-01T00:00:00",
439
+ "2019-06-01T00:00:00",
440
+ "2019-05-01T00:00:00",
441
+ "2019-04-01T00:00:00",
442
+ "2019-03-01T00:00:00",
443
+ "2019-02-01T00:00:00",
444
+ "2019-01-01T00:00:00",
445
+ "2018-12-01T00:00:00",
446
+ "2018-11-01T00:00:00",
447
+ "2018-10-01T00:00:00",
448
+ "2018-09-01T00:00:00",
449
+ "2018-08-01T00:00:00",
450
+ "2018-07-01T00:00:00",
451
+ "2018-06-01T00:00:00",
452
+ "2018-05-01T00:00:00",
453
+ "2018-04-01T00:00:00",
454
+ "2018-03-01T00:00:00",
455
+ "2018-02-01T00:00:00",
456
+ "2018-01-01T00:00:00",
457
+ "2017-12-01T00:00:00",
458
+ "2017-11-01T00:00:00",
459
+ "2017-10-01T00:00:00",
460
+ "2017-09-01T00:00:00",
461
+ "2017-08-01T00:00:00",
462
+ "2017-07-01T00:00:00",
463
+ "2017-06-01T00:00:00",
464
+ "2017-05-01T00:00:00",
465
+ "2017-04-01T00:00:00",
466
+ "2017-03-01T00:00:00",
467
+ "2017-02-01T00:00:00",
468
+ "2017-01-01T00:00:00",
469
+ "2016-12-01T00:00:00",
470
+ "2016-11-01T00:00:00",
471
+ "2016-10-01T00:00:00",
472
+ "2016-09-01T00:00:00",
473
+ "2016-08-01T00:00:00",
474
+ "2016-07-01T00:00:00",
475
+ "2016-06-01T00:00:00",
476
+ "2016-05-01T00:00:00",
477
+ "2016-04-01T00:00:00",
478
+ "2016-03-01T00:00:00",
479
+ "2016-02-01T00:00:00",
480
+ "2016-01-01T00:00:00",
481
+ "2015-12-01T00:00:00",
482
+ "2015-11-01T00:00:00",
483
+ "2015-10-01T00:00:00",
484
+ "2015-09-01T00:00:00",
485
+ "2015-08-01T00:00:00",
486
+ "2015-07-01T00:00:00",
487
+ "2015-06-01T00:00:00",
488
+ "2015-05-01T00:00:00",
489
+ "2015-04-01T00:00:00",
490
+ "2015-03-01T00:00:00",
491
+ "2015-02-01T00:00:00",
492
+ "2015-01-01T00:00:00",
493
+ "2014-12-01T00:00:00",
494
+ "2014-11-01T00:00:00",
495
+ "2014-10-01T00:00:00",
496
+ "2014-09-01T00:00:00",
497
+ "2014-08-01T00:00:00",
498
+ "2014-07-01T00:00:00",
499
+ "2014-06-01T00:00:00",
500
+ "2014-05-01T00:00:00",
501
+ "2014-04-01T00:00:00",
502
+ "2014-03-01T00:00:00",
503
+ "2014-02-01T00:00:00",
504
+ "2014-01-01T00:00:00",
505
+ "2013-12-01T00:00:00",
506
+ "2013-11-01T00:00:00",
507
+ "2013-10-01T00:00:00",
508
+ "2013-09-01T00:00:00",
509
+ "2013-08-01T00:00:00",
510
+ "2013-07-01T00:00:00",
511
+ "2013-06-01T00:00:00",
512
+ "2013-05-01T00:00:00",
513
+ "2013-04-01T00:00:00",
514
+ "2013-03-01T00:00:00",
515
+ "2013-02-01T00:00:00",
516
+ "2013-01-01T00:00:00",
517
+ "2012-12-01T00:00:00",
518
+ "2012-11-01T00:00:00",
519
+ "2012-10-01T00:00:00",
520
+ "2012-09-01T00:00:00",
521
+ "2012-08-01T00:00:00",
522
+ "2012-07-01T00:00:00",
523
+ "2012-06-01T00:00:00",
524
+ "2012-05-01T00:00:00",
525
+ "2012-04-01T00:00:00",
526
+ "2012-03-01T00:00:00",
527
+ "2012-02-01T00:00:00",
528
+ "2012-01-01T00:00:00",
529
+ "2011-12-01T00:00:00"
530
+ ],
531
+ "xaxis": "x",
532
+ "y": [
533
+ 146.25,
534
+ 132.15,
535
+ 121.1,
536
+ 160.01,
537
+ 156,
538
+ 137.3,
539
+ 128.05,
540
+ 135,
541
+ 189.7,
542
+ 177.25,
543
+ 192.85,
544
+ 251.75,
545
+ 404.15,
546
+ 398.5,
547
+ 356.3,
548
+ 433.7,
549
+ 425,
550
+ 407.9,
551
+ 385.95,
552
+ 427,
553
+ 326.6,
554
+ 259,
555
+ 274.5,
556
+ 222.75,
557
+ 169.6,
558
+ 152,
559
+ 223.45,
560
+ 218,
561
+ 174.25,
562
+ 149.75,
563
+ 134.7,
564
+ 118.9,
565
+ 93.3,
566
+ 96.25,
567
+ 85.1,
568
+ 86.2,
569
+ 80.5,
570
+ 70.3,
571
+ 58.2,
572
+ 58.6,
573
+ 51.95,
574
+ 51.95,
575
+ 52.15,
576
+ 52,
577
+ 52.35,
578
+ 67.85,
579
+ 67.4,
580
+ 68.5,
581
+ 67.7,
582
+ 67.85,
583
+ 66.9,
584
+ 70.05,
585
+ 65.75,
586
+ 69.45,
587
+ 70.9,
588
+ 83.4,
589
+ 87.3,
590
+ 92.75,
591
+ 96.05,
592
+ 99,
593
+ 102.05,
594
+ 101.7,
595
+ 105.2,
596
+ 113.85,
597
+ 118,
598
+ 117.55,
599
+ 114.4,
600
+ 110.15,
601
+ 99.4,
602
+ 96.4,
603
+ 104.25,
604
+ 104.35,
605
+ 100.8,
606
+ 96.8,
607
+ 99.9,
608
+ 97.25,
609
+ 95.3,
610
+ 93.2,
611
+ 81,
612
+ 73.45,
613
+ 83.55,
614
+ 80.75,
615
+ 83.45,
616
+ 83,
617
+ 88.4,
618
+ 87.45,
619
+ 108.6,
620
+ 72.2,
621
+ 68.75,
622
+ 61.15,
623
+ 56.95,
624
+ 53.5,
625
+ 50.75,
626
+ 51.1,
627
+ 50.5,
628
+ 48.8,
629
+ 50.6,
630
+ 53.55,
631
+ 53.05,
632
+ 53.85,
633
+ 58.5,
634
+ 60.3,
635
+ 60.8,
636
+ 60.05,
637
+ 62.05,
638
+ 56.8,
639
+ 71.05,
640
+ 62.45,
641
+ 62.3,
642
+ 63.45,
643
+ 64.3,
644
+ 64.65,
645
+ 69.25,
646
+ 68.95,
647
+ 71.1,
648
+ 73.9,
649
+ 73.35,
650
+ 74.55,
651
+ 77.55,
652
+ 82.35,
653
+ 87.25,
654
+ 84.55,
655
+ 84.15,
656
+ 79.15,
657
+ 78.55,
658
+ 77.05,
659
+ 83,
660
+ 87.7,
661
+ 87,
662
+ 90.65,
663
+ 94.25,
664
+ 95.2,
665
+ 93.75,
666
+ 85.9,
667
+ 83.6,
668
+ 89.5,
669
+ 91.75,
670
+ 90.15,
671
+ 88.4,
672
+ 91.45,
673
+ 100.75,
674
+ 107,
675
+ 112.1,
676
+ 117.45,
677
+ 112.25
678
+ ],
679
+ "yaxis": "y"
680
+ }
681
+ ],
682
+ "layout": {
683
+ "font": {
684
+ "size": 18
685
+ },
686
+ "height": 400,
687
+ "legend": {
688
+ "tracegroupgap": 0
689
+ },
690
+ "margin": {
691
+ "t": 60
692
+ },
693
+ "template": {
694
+ "data": {
695
+ "bar": [
696
+ {
697
+ "error_x": {
698
+ "color": "rgb(36,36,36)"
699
+ },
700
+ "error_y": {
701
+ "color": "rgb(36,36,36)"
702
+ },
703
+ "marker": {
704
+ "line": {
705
+ "color": "white",
706
+ "width": 0.5
707
+ },
708
+ "pattern": {
709
+ "fillmode": "overlay",
710
+ "size": 10,
711
+ "solidity": 0.2
712
+ }
713
+ },
714
+ "type": "bar"
715
+ }
716
+ ],
717
+ "barpolar": [
718
+ {
719
+ "marker": {
720
+ "line": {
721
+ "color": "white",
722
+ "width": 0.5
723
+ },
724
+ "pattern": {
725
+ "fillmode": "overlay",
726
+ "size": 10,
727
+ "solidity": 0.2
728
+ }
729
+ },
730
+ "type": "barpolar"
731
+ }
732
+ ],
733
+ "carpet": [
734
+ {
735
+ "aaxis": {
736
+ "endlinecolor": "rgb(36,36,36)",
737
+ "gridcolor": "white",
738
+ "linecolor": "white",
739
+ "minorgridcolor": "white",
740
+ "startlinecolor": "rgb(36,36,36)"
741
+ },
742
+ "baxis": {
743
+ "endlinecolor": "rgb(36,36,36)",
744
+ "gridcolor": "white",
745
+ "linecolor": "white",
746
+ "minorgridcolor": "white",
747
+ "startlinecolor": "rgb(36,36,36)"
748
+ },
749
+ "type": "carpet"
750
+ }
751
+ ],
752
+ "choropleth": [
753
+ {
754
+ "colorbar": {
755
+ "outlinewidth": 1,
756
+ "tickcolor": "rgb(36,36,36)",
757
+ "ticks": "outside"
758
+ },
759
+ "type": "choropleth"
760
+ }
761
+ ],
762
+ "contour": [
763
+ {
764
+ "colorbar": {
765
+ "outlinewidth": 1,
766
+ "tickcolor": "rgb(36,36,36)",
767
+ "ticks": "outside"
768
+ },
769
+ "colorscale": [
770
+ [
771
+ 0,
772
+ "#440154"
773
+ ],
774
+ [
775
+ 0.1111111111111111,
776
+ "#482878"
777
+ ],
778
+ [
779
+ 0.2222222222222222,
780
+ "#3e4989"
781
+ ],
782
+ [
783
+ 0.3333333333333333,
784
+ "#31688e"
785
+ ],
786
+ [
787
+ 0.4444444444444444,
788
+ "#26828e"
789
+ ],
790
+ [
791
+ 0.5555555555555556,
792
+ "#1f9e89"
793
+ ],
794
+ [
795
+ 0.6666666666666666,
796
+ "#35b779"
797
+ ],
798
+ [
799
+ 0.7777777777777778,
800
+ "#6ece58"
801
+ ],
802
+ [
803
+ 0.8888888888888888,
804
+ "#b5de2b"
805
+ ],
806
+ [
807
+ 1,
808
+ "#fde725"
809
+ ]
810
+ ],
811
+ "type": "contour"
812
+ }
813
+ ],
814
+ "contourcarpet": [
815
+ {
816
+ "colorbar": {
817
+ "outlinewidth": 1,
818
+ "tickcolor": "rgb(36,36,36)",
819
+ "ticks": "outside"
820
+ },
821
+ "type": "contourcarpet"
822
+ }
823
+ ],
824
+ "heatmap": [
825
+ {
826
+ "colorbar": {
827
+ "outlinewidth": 1,
828
+ "tickcolor": "rgb(36,36,36)",
829
+ "ticks": "outside"
830
+ },
831
+ "colorscale": [
832
+ [
833
+ 0,
834
+ "#440154"
835
+ ],
836
+ [
837
+ 0.1111111111111111,
838
+ "#482878"
839
+ ],
840
+ [
841
+ 0.2222222222222222,
842
+ "#3e4989"
843
+ ],
844
+ [
845
+ 0.3333333333333333,
846
+ "#31688e"
847
+ ],
848
+ [
849
+ 0.4444444444444444,
850
+ "#26828e"
851
+ ],
852
+ [
853
+ 0.5555555555555556,
854
+ "#1f9e89"
855
+ ],
856
+ [
857
+ 0.6666666666666666,
858
+ "#35b779"
859
+ ],
860
+ [
861
+ 0.7777777777777778,
862
+ "#6ece58"
863
+ ],
864
+ [
865
+ 0.8888888888888888,
866
+ "#b5de2b"
867
+ ],
868
+ [
869
+ 1,
870
+ "#fde725"
871
+ ]
872
+ ],
873
+ "type": "heatmap"
874
+ }
875
+ ],
876
+ "heatmapgl": [
877
+ {
878
+ "colorbar": {
879
+ "outlinewidth": 1,
880
+ "tickcolor": "rgb(36,36,36)",
881
+ "ticks": "outside"
882
+ },
883
+ "colorscale": [
884
+ [
885
+ 0,
886
+ "#440154"
887
+ ],
888
+ [
889
+ 0.1111111111111111,
890
+ "#482878"
891
+ ],
892
+ [
893
+ 0.2222222222222222,
894
+ "#3e4989"
895
+ ],
896
+ [
897
+ 0.3333333333333333,
898
+ "#31688e"
899
+ ],
900
+ [
901
+ 0.4444444444444444,
902
+ "#26828e"
903
+ ],
904
+ [
905
+ 0.5555555555555556,
906
+ "#1f9e89"
907
+ ],
908
+ [
909
+ 0.6666666666666666,
910
+ "#35b779"
911
+ ],
912
+ [
913
+ 0.7777777777777778,
914
+ "#6ece58"
915
+ ],
916
+ [
917
+ 0.8888888888888888,
918
+ "#b5de2b"
919
+ ],
920
+ [
921
+ 1,
922
+ "#fde725"
923
+ ]
924
+ ],
925
+ "type": "heatmapgl"
926
+ }
927
+ ],
928
+ "histogram": [
929
+ {
930
+ "marker": {
931
+ "line": {
932
+ "color": "white",
933
+ "width": 0.6
934
+ }
935
+ },
936
+ "type": "histogram"
937
+ }
938
+ ],
939
+ "histogram2d": [
940
+ {
941
+ "colorbar": {
942
+ "outlinewidth": 1,
943
+ "tickcolor": "rgb(36,36,36)",
944
+ "ticks": "outside"
945
+ },
946
+ "colorscale": [
947
+ [
948
+ 0,
949
+ "#440154"
950
+ ],
951
+ [
952
+ 0.1111111111111111,
953
+ "#482878"
954
+ ],
955
+ [
956
+ 0.2222222222222222,
957
+ "#3e4989"
958
+ ],
959
+ [
960
+ 0.3333333333333333,
961
+ "#31688e"
962
+ ],
963
+ [
964
+ 0.4444444444444444,
965
+ "#26828e"
966
+ ],
967
+ [
968
+ 0.5555555555555556,
969
+ "#1f9e89"
970
+ ],
971
+ [
972
+ 0.6666666666666666,
973
+ "#35b779"
974
+ ],
975
+ [
976
+ 0.7777777777777778,
977
+ "#6ece58"
978
+ ],
979
+ [
980
+ 0.8888888888888888,
981
+ "#b5de2b"
982
+ ],
983
+ [
984
+ 1,
985
+ "#fde725"
986
+ ]
987
+ ],
988
+ "type": "histogram2d"
989
+ }
990
+ ],
991
+ "histogram2dcontour": [
992
+ {
993
+ "colorbar": {
994
+ "outlinewidth": 1,
995
+ "tickcolor": "rgb(36,36,36)",
996
+ "ticks": "outside"
997
+ },
998
+ "colorscale": [
999
+ [
1000
+ 0,
1001
+ "#440154"
1002
+ ],
1003
+ [
1004
+ 0.1111111111111111,
1005
+ "#482878"
1006
+ ],
1007
+ [
1008
+ 0.2222222222222222,
1009
+ "#3e4989"
1010
+ ],
1011
+ [
1012
+ 0.3333333333333333,
1013
+ "#31688e"
1014
+ ],
1015
+ [
1016
+ 0.4444444444444444,
1017
+ "#26828e"
1018
+ ],
1019
+ [
1020
+ 0.5555555555555556,
1021
+ "#1f9e89"
1022
+ ],
1023
+ [
1024
+ 0.6666666666666666,
1025
+ "#35b779"
1026
+ ],
1027
+ [
1028
+ 0.7777777777777778,
1029
+ "#6ece58"
1030
+ ],
1031
+ [
1032
+ 0.8888888888888888,
1033
+ "#b5de2b"
1034
+ ],
1035
+ [
1036
+ 1,
1037
+ "#fde725"
1038
+ ]
1039
+ ],
1040
+ "type": "histogram2dcontour"
1041
+ }
1042
+ ],
1043
+ "mesh3d": [
1044
+ {
1045
+ "colorbar": {
1046
+ "outlinewidth": 1,
1047
+ "tickcolor": "rgb(36,36,36)",
1048
+ "ticks": "outside"
1049
+ },
1050
+ "type": "mesh3d"
1051
+ }
1052
+ ],
1053
+ "parcoords": [
1054
+ {
1055
+ "line": {
1056
+ "colorbar": {
1057
+ "outlinewidth": 1,
1058
+ "tickcolor": "rgb(36,36,36)",
1059
+ "ticks": "outside"
1060
+ }
1061
+ },
1062
+ "type": "parcoords"
1063
+ }
1064
+ ],
1065
+ "pie": [
1066
+ {
1067
+ "automargin": true,
1068
+ "type": "pie"
1069
+ }
1070
+ ],
1071
+ "scatter": [
1072
+ {
1073
+ "fillpattern": {
1074
+ "fillmode": "overlay",
1075
+ "size": 10,
1076
+ "solidity": 0.2
1077
+ },
1078
+ "type": "scatter"
1079
+ }
1080
+ ],
1081
+ "scatter3d": [
1082
+ {
1083
+ "line": {
1084
+ "colorbar": {
1085
+ "outlinewidth": 1,
1086
+ "tickcolor": "rgb(36,36,36)",
1087
+ "ticks": "outside"
1088
+ }
1089
+ },
1090
+ "marker": {
1091
+ "colorbar": {
1092
+ "outlinewidth": 1,
1093
+ "tickcolor": "rgb(36,36,36)",
1094
+ "ticks": "outside"
1095
+ }
1096
+ },
1097
+ "type": "scatter3d"
1098
+ }
1099
+ ],
1100
+ "scattercarpet": [
1101
+ {
1102
+ "marker": {
1103
+ "colorbar": {
1104
+ "outlinewidth": 1,
1105
+ "tickcolor": "rgb(36,36,36)",
1106
+ "ticks": "outside"
1107
+ }
1108
+ },
1109
+ "type": "scattercarpet"
1110
+ }
1111
+ ],
1112
+ "scattergeo": [
1113
+ {
1114
+ "marker": {
1115
+ "colorbar": {
1116
+ "outlinewidth": 1,
1117
+ "tickcolor": "rgb(36,36,36)",
1118
+ "ticks": "outside"
1119
+ }
1120
+ },
1121
+ "type": "scattergeo"
1122
+ }
1123
+ ],
1124
+ "scattergl": [
1125
+ {
1126
+ "marker": {
1127
+ "colorbar": {
1128
+ "outlinewidth": 1,
1129
+ "tickcolor": "rgb(36,36,36)",
1130
+ "ticks": "outside"
1131
+ }
1132
+ },
1133
+ "type": "scattergl"
1134
+ }
1135
+ ],
1136
+ "scattermapbox": [
1137
+ {
1138
+ "marker": {
1139
+ "colorbar": {
1140
+ "outlinewidth": 1,
1141
+ "tickcolor": "rgb(36,36,36)",
1142
+ "ticks": "outside"
1143
+ }
1144
+ },
1145
+ "type": "scattermapbox"
1146
+ }
1147
+ ],
1148
+ "scatterpolar": [
1149
+ {
1150
+ "marker": {
1151
+ "colorbar": {
1152
+ "outlinewidth": 1,
1153
+ "tickcolor": "rgb(36,36,36)",
1154
+ "ticks": "outside"
1155
+ }
1156
+ },
1157
+ "type": "scatterpolar"
1158
+ }
1159
+ ],
1160
+ "scatterpolargl": [
1161
+ {
1162
+ "marker": {
1163
+ "colorbar": {
1164
+ "outlinewidth": 1,
1165
+ "tickcolor": "rgb(36,36,36)",
1166
+ "ticks": "outside"
1167
+ }
1168
+ },
1169
+ "type": "scatterpolargl"
1170
+ }
1171
+ ],
1172
+ "scatterternary": [
1173
+ {
1174
+ "marker": {
1175
+ "colorbar": {
1176
+ "outlinewidth": 1,
1177
+ "tickcolor": "rgb(36,36,36)",
1178
+ "ticks": "outside"
1179
+ }
1180
+ },
1181
+ "type": "scatterternary"
1182
+ }
1183
+ ],
1184
+ "surface": [
1185
+ {
1186
+ "colorbar": {
1187
+ "outlinewidth": 1,
1188
+ "tickcolor": "rgb(36,36,36)",
1189
+ "ticks": "outside"
1190
+ },
1191
+ "colorscale": [
1192
+ [
1193
+ 0,
1194
+ "#440154"
1195
+ ],
1196
+ [
1197
+ 0.1111111111111111,
1198
+ "#482878"
1199
+ ],
1200
+ [
1201
+ 0.2222222222222222,
1202
+ "#3e4989"
1203
+ ],
1204
+ [
1205
+ 0.3333333333333333,
1206
+ "#31688e"
1207
+ ],
1208
+ [
1209
+ 0.4444444444444444,
1210
+ "#26828e"
1211
+ ],
1212
+ [
1213
+ 0.5555555555555556,
1214
+ "#1f9e89"
1215
+ ],
1216
+ [
1217
+ 0.6666666666666666,
1218
+ "#35b779"
1219
+ ],
1220
+ [
1221
+ 0.7777777777777778,
1222
+ "#6ece58"
1223
+ ],
1224
+ [
1225
+ 0.8888888888888888,
1226
+ "#b5de2b"
1227
+ ],
1228
+ [
1229
+ 1,
1230
+ "#fde725"
1231
+ ]
1232
+ ],
1233
+ "type": "surface"
1234
+ }
1235
+ ],
1236
+ "table": [
1237
+ {
1238
+ "cells": {
1239
+ "fill": {
1240
+ "color": "rgb(237,237,237)"
1241
+ },
1242
+ "line": {
1243
+ "color": "white"
1244
+ }
1245
+ },
1246
+ "header": {
1247
+ "fill": {
1248
+ "color": "rgb(217,217,217)"
1249
+ },
1250
+ "line": {
1251
+ "color": "white"
1252
+ }
1253
+ },
1254
+ "type": "table"
1255
+ }
1256
+ ]
1257
+ },
1258
+ "layout": {
1259
+ "annotationdefaults": {
1260
+ "arrowhead": 0,
1261
+ "arrowwidth": 1
1262
+ },
1263
+ "autotypenumbers": "strict",
1264
+ "coloraxis": {
1265
+ "colorbar": {
1266
+ "outlinewidth": 1,
1267
+ "tickcolor": "rgb(36,36,36)",
1268
+ "ticks": "outside"
1269
+ }
1270
+ },
1271
+ "colorscale": {
1272
+ "diverging": [
1273
+ [
1274
+ 0,
1275
+ "rgb(103,0,31)"
1276
+ ],
1277
+ [
1278
+ 0.1,
1279
+ "rgb(178,24,43)"
1280
+ ],
1281
+ [
1282
+ 0.2,
1283
+ "rgb(214,96,77)"
1284
+ ],
1285
+ [
1286
+ 0.3,
1287
+ "rgb(244,165,130)"
1288
+ ],
1289
+ [
1290
+ 0.4,
1291
+ "rgb(253,219,199)"
1292
+ ],
1293
+ [
1294
+ 0.5,
1295
+ "rgb(247,247,247)"
1296
+ ],
1297
+ [
1298
+ 0.6,
1299
+ "rgb(209,229,240)"
1300
+ ],
1301
+ [
1302
+ 0.7,
1303
+ "rgb(146,197,222)"
1304
+ ],
1305
+ [
1306
+ 0.8,
1307
+ "rgb(67,147,195)"
1308
+ ],
1309
+ [
1310
+ 0.9,
1311
+ "rgb(33,102,172)"
1312
+ ],
1313
+ [
1314
+ 1,
1315
+ "rgb(5,48,97)"
1316
+ ]
1317
+ ],
1318
+ "sequential": [
1319
+ [
1320
+ 0,
1321
+ "#440154"
1322
+ ],
1323
+ [
1324
+ 0.1111111111111111,
1325
+ "#482878"
1326
+ ],
1327
+ [
1328
+ 0.2222222222222222,
1329
+ "#3e4989"
1330
+ ],
1331
+ [
1332
+ 0.3333333333333333,
1333
+ "#31688e"
1334
+ ],
1335
+ [
1336
+ 0.4444444444444444,
1337
+ "#26828e"
1338
+ ],
1339
+ [
1340
+ 0.5555555555555556,
1341
+ "#1f9e89"
1342
+ ],
1343
+ [
1344
+ 0.6666666666666666,
1345
+ "#35b779"
1346
+ ],
1347
+ [
1348
+ 0.7777777777777778,
1349
+ "#6ece58"
1350
+ ],
1351
+ [
1352
+ 0.8888888888888888,
1353
+ "#b5de2b"
1354
+ ],
1355
+ [
1356
+ 1,
1357
+ "#fde725"
1358
+ ]
1359
+ ],
1360
+ "sequentialminus": [
1361
+ [
1362
+ 0,
1363
+ "#440154"
1364
+ ],
1365
+ [
1366
+ 0.1111111111111111,
1367
+ "#482878"
1368
+ ],
1369
+ [
1370
+ 0.2222222222222222,
1371
+ "#3e4989"
1372
+ ],
1373
+ [
1374
+ 0.3333333333333333,
1375
+ "#31688e"
1376
+ ],
1377
+ [
1378
+ 0.4444444444444444,
1379
+ "#26828e"
1380
+ ],
1381
+ [
1382
+ 0.5555555555555556,
1383
+ "#1f9e89"
1384
+ ],
1385
+ [
1386
+ 0.6666666666666666,
1387
+ "#35b779"
1388
+ ],
1389
+ [
1390
+ 0.7777777777777778,
1391
+ "#6ece58"
1392
+ ],
1393
+ [
1394
+ 0.8888888888888888,
1395
+ "#b5de2b"
1396
+ ],
1397
+ [
1398
+ 1,
1399
+ "#fde725"
1400
+ ]
1401
+ ]
1402
+ },
1403
+ "colorway": [
1404
+ "#1F77B4",
1405
+ "#FF7F0E",
1406
+ "#2CA02C",
1407
+ "#D62728",
1408
+ "#9467BD",
1409
+ "#8C564B",
1410
+ "#E377C2",
1411
+ "#7F7F7F",
1412
+ "#BCBD22",
1413
+ "#17BECF"
1414
+ ],
1415
+ "font": {
1416
+ "color": "rgb(36,36,36)"
1417
+ },
1418
+ "geo": {
1419
+ "bgcolor": "white",
1420
+ "lakecolor": "white",
1421
+ "landcolor": "white",
1422
+ "showlakes": true,
1423
+ "showland": true,
1424
+ "subunitcolor": "white"
1425
+ },
1426
+ "hoverlabel": {
1427
+ "align": "left"
1428
+ },
1429
+ "hovermode": "closest",
1430
+ "mapbox": {
1431
+ "style": "light"
1432
+ },
1433
+ "paper_bgcolor": "white",
1434
+ "plot_bgcolor": "white",
1435
+ "polar": {
1436
+ "angularaxis": {
1437
+ "gridcolor": "rgb(232,232,232)",
1438
+ "linecolor": "rgb(36,36,36)",
1439
+ "showgrid": false,
1440
+ "showline": true,
1441
+ "ticks": "outside"
1442
+ },
1443
+ "bgcolor": "white",
1444
+ "radialaxis": {
1445
+ "gridcolor": "rgb(232,232,232)",
1446
+ "linecolor": "rgb(36,36,36)",
1447
+ "showgrid": false,
1448
+ "showline": true,
1449
+ "ticks": "outside"
1450
+ }
1451
+ },
1452
+ "scene": {
1453
+ "xaxis": {
1454
+ "backgroundcolor": "white",
1455
+ "gridcolor": "rgb(232,232,232)",
1456
+ "gridwidth": 2,
1457
+ "linecolor": "rgb(36,36,36)",
1458
+ "showbackground": true,
1459
+ "showgrid": false,
1460
+ "showline": true,
1461
+ "ticks": "outside",
1462
+ "zeroline": false,
1463
+ "zerolinecolor": "rgb(36,36,36)"
1464
+ },
1465
+ "yaxis": {
1466
+ "backgroundcolor": "white",
1467
+ "gridcolor": "rgb(232,232,232)",
1468
+ "gridwidth": 2,
1469
+ "linecolor": "rgb(36,36,36)",
1470
+ "showbackground": true,
1471
+ "showgrid": false,
1472
+ "showline": true,
1473
+ "ticks": "outside",
1474
+ "zeroline": false,
1475
+ "zerolinecolor": "rgb(36,36,36)"
1476
+ },
1477
+ "zaxis": {
1478
+ "backgroundcolor": "white",
1479
+ "gridcolor": "rgb(232,232,232)",
1480
+ "gridwidth": 2,
1481
+ "linecolor": "rgb(36,36,36)",
1482
+ "showbackground": true,
1483
+ "showgrid": false,
1484
+ "showline": true,
1485
+ "ticks": "outside",
1486
+ "zeroline": false,
1487
+ "zerolinecolor": "rgb(36,36,36)"
1488
+ }
1489
+ },
1490
+ "shapedefaults": {
1491
+ "fillcolor": "black",
1492
+ "line": {
1493
+ "width": 0
1494
+ },
1495
+ "opacity": 0.3
1496
+ },
1497
+ "ternary": {
1498
+ "aaxis": {
1499
+ "gridcolor": "rgb(232,232,232)",
1500
+ "linecolor": "rgb(36,36,36)",
1501
+ "showgrid": false,
1502
+ "showline": true,
1503
+ "ticks": "outside"
1504
+ },
1505
+ "baxis": {
1506
+ "gridcolor": "rgb(232,232,232)",
1507
+ "linecolor": "rgb(36,36,36)",
1508
+ "showgrid": false,
1509
+ "showline": true,
1510
+ "ticks": "outside"
1511
+ },
1512
+ "bgcolor": "white",
1513
+ "caxis": {
1514
+ "gridcolor": "rgb(232,232,232)",
1515
+ "linecolor": "rgb(36,36,36)",
1516
+ "showgrid": false,
1517
+ "showline": true,
1518
+ "ticks": "outside"
1519
+ }
1520
+ },
1521
+ "title": {
1522
+ "x": 0.05
1523
+ },
1524
+ "xaxis": {
1525
+ "automargin": true,
1526
+ "gridcolor": "rgb(232,232,232)",
1527
+ "linecolor": "rgb(36,36,36)",
1528
+ "showgrid": false,
1529
+ "showline": true,
1530
+ "ticks": "outside",
1531
+ "title": {
1532
+ "standoff": 15
1533
+ },
1534
+ "zeroline": false,
1535
+ "zerolinecolor": "rgb(36,36,36)"
1536
+ },
1537
+ "yaxis": {
1538
+ "automargin": true,
1539
+ "gridcolor": "rgb(232,232,232)",
1540
+ "linecolor": "rgb(36,36,36)",
1541
+ "showgrid": false,
1542
+ "showline": true,
1543
+ "ticks": "outside",
1544
+ "title": {
1545
+ "standoff": 15
1546
+ },
1547
+ "zeroline": false,
1548
+ "zerolinecolor": "rgb(36,36,36)"
1549
+ }
1550
+ }
1551
+ },
1552
+ "title": {
1553
+ "text": "Coal Price",
1554
+ "x": 0.5
1555
+ },
1556
+ "width": 650,
1557
+ "xaxis": {
1558
+ "anchor": "y",
1559
+ "domain": [
1560
+ 0,
1561
+ 1
1562
+ ],
1563
+ "title": {
1564
+ "text": "date"
1565
+ }
1566
+ },
1567
+ "yaxis": {
1568
+ "anchor": "x",
1569
+ "domain": [
1570
+ 0,
1571
+ 1
1572
+ ],
1573
+ "title": {
1574
+ "text": "newcastle"
1575
+ }
1576
+ }
1577
+ }
1578
+ }
1579
+ },
1580
+ "metadata": {},
1581
+ "output_type": "display_data"
1582
+ }
1583
+ ],
1584
+ "source": [
1585
+ "fig.update_layout(\n",
1586
+ " template=\"simple_white\",\n",
1587
+ " font=dict(size=18),\n",
1588
+ " title_text=\"Coal Price\",\n",
1589
+ " width=650,\n",
1590
+ " title_x=0.5,\n",
1591
+ " height=400,\n",
1592
+ ")\n",
1593
+ "fig.show()"
1594
+ ]
1595
+ },
1596
  {
1597
  "cell_type": "code",
1598
  "execution_count": null,
 
1602
  },
1603
  {
1604
  "cell_type": "code",
1605
+ "execution_count": null,
1606
  "metadata": {},
1607
  "outputs": [],
1608
  "source": [
 
1614
  },
1615
  {
1616
  "cell_type": "code",
1617
+ "execution_count": null,
1618
  "metadata": {},
1619
+ "outputs": [],
 
 
 
 
 
 
 
 
 
 
 
 
1620
  "source": [
1621
  "print(f\"slope: {slope}\")\n",
1622
  "print(f\"intercept: {intercept}\")\n",
 
1627
  },
1628
  {
1629
  "cell_type": "code",
1630
+ "execution_count": null,
1631
  "metadata": {},
1632
+ "outputs": [],
 
 
 
 
 
 
 
 
 
 
 
1633
  "source": [
1634
  "def myfunc(x):\n",
1635
  " return slope * x + intercept\n",