ibnummuhammad commited on
Commit
29f08a8
·
1 Parent(s): 5ac2d9e
Files changed (1) hide show
  1. coal-price-forecast.ipynb +10 -41
coal-price-forecast.ipynb CHANGED
@@ -1506,7 +1506,7 @@
1506
  "name": "stderr",
1507
  "output_type": "stream",
1508
  "text": [
1509
- "/var/folders/fj/ycln97zn6b1ckstg6ksdmgl80000gp/T/ipykernel_13160/2627926293.py:1: SettingWithCopyWarning:\n",
1510
  "\n",
1511
  "\n",
1512
  "A value is trying to be set on a copy of a slice from a DataFrame.\n",
@@ -9861,51 +9861,20 @@
9861
  "plt.show()"
9862
  ]
9863
  },
 
 
 
 
 
 
 
9864
  {
9865
  "cell_type": "code",
9866
  "execution_count": 22,
9867
  "metadata": {},
9868
- "outputs": [
9869
- {
9870
- "ename": "ValueError",
9871
- "evalue": "all the input array dimensions except for the concatenation axis must match exactly, but along dimension 1, the array at index 0 has size 145 and the array at index 1 has size 780",
9872
- "output_type": "error",
9873
- "traceback": [
9874
- "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
9875
- "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)",
9876
- "Cell \u001b[0;32mIn[22], line 10\u001b[0m\n\u001b[1;32m 7\u001b[0m x \u001b[38;5;241m=\u001b[39m df[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mcoal_price_data\u001b[39m\u001b[38;5;124m\"\u001b[39m][\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mnewcastle\u001b[39m\u001b[38;5;124m\"\u001b[39m]\n\u001b[1;32m 8\u001b[0m y \u001b[38;5;241m=\u001b[39m df[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mM2SL\u001b[39m\u001b[38;5;124m\"\u001b[39m][y_axis]\n\u001b[0;32m---> 10\u001b[0m slope, intercept, r, p, std_err \u001b[38;5;241m=\u001b[39m \u001b[43mstats\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mlinregress\u001b[49m\u001b[43m(\u001b[49m\u001b[43mx\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43my\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 12\u001b[0m \u001b[38;5;28mprint\u001b[39m(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mslope: \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mslope\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m 13\u001b[0m \u001b[38;5;28mprint\u001b[39m(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mintercept: \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mintercept\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m)\n",
9877
- "File \u001b[0;32m/opt/homebrew/anaconda3/envs/py312/lib/python3.12/site-packages/scipy/stats/_stats_mstats_common.py:167\u001b[0m, in \u001b[0;36mlinregress\u001b[0;34m(x, y, alternative)\u001b[0m\n\u001b[1;32m 162\u001b[0m ymean \u001b[38;5;241m=\u001b[39m np\u001b[38;5;241m.\u001b[39mmean(y, \u001b[38;5;28;01mNone\u001b[39;00m)\n\u001b[1;32m 164\u001b[0m \u001b[38;5;66;03m# Average sums of square differences from the mean\u001b[39;00m\n\u001b[1;32m 165\u001b[0m \u001b[38;5;66;03m# ssxm = mean( (x-mean(x))^2 )\u001b[39;00m\n\u001b[1;32m 166\u001b[0m \u001b[38;5;66;03m# ssxym = mean( (x-mean(x)) * (y-mean(y)) )\u001b[39;00m\n\u001b[0;32m--> 167\u001b[0m ssxm, ssxym, _, ssym \u001b[38;5;241m=\u001b[39m \u001b[43mnp\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcov\u001b[49m\u001b[43m(\u001b[49m\u001b[43mx\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43my\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mbias\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;241;43m1\u001b[39;49m\u001b[43m)\u001b[49m\u001b[38;5;241m.\u001b[39mflat\n\u001b[1;32m 169\u001b[0m \u001b[38;5;66;03m# R-value\u001b[39;00m\n\u001b[1;32m 170\u001b[0m \u001b[38;5;66;03m# r = ssxym / sqrt( ssxm * ssym )\u001b[39;00m\n\u001b[1;32m 171\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m ssxm \u001b[38;5;241m==\u001b[39m \u001b[38;5;241m0.0\u001b[39m \u001b[38;5;129;01mor\u001b[39;00m ssym \u001b[38;5;241m==\u001b[39m \u001b[38;5;241m0.0\u001b[39m:\n\u001b[1;32m 172\u001b[0m \u001b[38;5;66;03m# If the denominator was going to be 0\u001b[39;00m\n",
9878
- "File \u001b[0;32m/opt/homebrew/anaconda3/envs/py312/lib/python3.12/site-packages/numpy/lib/function_base.py:2683\u001b[0m, in \u001b[0;36mcov\u001b[0;34m(m, y, rowvar, bias, ddof, fweights, aweights, dtype)\u001b[0m\n\u001b[1;32m 2681\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m rowvar \u001b[38;5;129;01mand\u001b[39;00m y\u001b[38;5;241m.\u001b[39mshape[\u001b[38;5;241m0\u001b[39m] \u001b[38;5;241m!=\u001b[39m \u001b[38;5;241m1\u001b[39m:\n\u001b[1;32m 2682\u001b[0m y \u001b[38;5;241m=\u001b[39m y\u001b[38;5;241m.\u001b[39mT\n\u001b[0;32m-> 2683\u001b[0m X \u001b[38;5;241m=\u001b[39m \u001b[43mnp\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mconcatenate\u001b[49m\u001b[43m(\u001b[49m\u001b[43m(\u001b[49m\u001b[43mX\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43my\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43maxis\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;241;43m0\u001b[39;49m\u001b[43m)\u001b[49m\n\u001b[1;32m 2685\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m ddof \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m 2686\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m bias \u001b[38;5;241m==\u001b[39m \u001b[38;5;241m0\u001b[39m:\n",
9879
- "\u001b[0;31mValueError\u001b[0m: all the input array dimensions except for the concatenation axis must match exactly, but along dimension 1, the array at index 0 has size 145 and the array at index 1 has size 780"
9880
- ]
9881
- }
9882
- ],
9883
  "source": [
9884
- "def myfunc(x):\n",
9885
- " return slope * x + intercept\n",
9886
- "\n",
9887
- "\n",
9888
- "y_axis = \"M2SL\"\n",
9889
- "\n",
9890
- "x = df[\"coal_price_data\"][\"newcastle\"]\n",
9891
- "y = df[\"M2SL\"][y_axis]\n",
9892
- "\n",
9893
- "slope, intercept, r, p, std_err = stats.linregress(x, y)\n",
9894
- "\n",
9895
- "print(f\"slope: {slope}\")\n",
9896
- "print(f\"intercept: {intercept}\")\n",
9897
- "print(f\"r: {r}\")\n",
9898
- "print(f\"p: {p}\")\n",
9899
- "print(f\"std_err: {std_err}\")\n",
9900
- "\n",
9901
- "\n",
9902
- "mymodel = list(map(myfunc, x))\n",
9903
- "\n",
9904
- "plt.scatter(x, y)\n",
9905
- "plt.plot(x, mymodel, color=\"orange\")\n",
9906
- "plt.xlabel(\"Newcastle\")\n",
9907
- "plt.ylabel(y_axis)\n",
9908
- "plt.show()"
9909
  ]
9910
  },
9911
  {
 
1506
  "name": "stderr",
1507
  "output_type": "stream",
1508
  "text": [
1509
+ "/var/folders/fj/ycln97zn6b1ckstg6ksdmgl80000gp/T/ipykernel_16548/2627926293.py:1: SettingWithCopyWarning:\n",
1510
  "\n",
1511
  "\n",
1512
  "A value is trying to be set on a copy of a slice from a DataFrame.\n",
 
9861
  "plt.show()"
9862
  ]
9863
  },
9864
+ {
9865
+ "cell_type": "code",
9866
+ "execution_count": null,
9867
+ "metadata": {},
9868
+ "outputs": [],
9869
+ "source": []
9870
+ },
9871
  {
9872
  "cell_type": "code",
9873
  "execution_count": 22,
9874
  "metadata": {},
9875
+ "outputs": [],
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9876
  "source": [
9877
+ "y_axis = \"M2SL\""
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9878
  ]
9879
  },
9880
  {