ipd's picture
init
197c331
raw
history blame
43 kB
# -*- coding:utf-8 -*-
# Rhizome
# Version beta 0.0, August 2023
# Property of IBM Research, Accelerated Discovery
#
"""
PLEASE NOTE THIS IMPLEMENTATION INCLUDES ADAPTED SOURCE CODE
OF THE MHG IMPLEMENTATION OF HIROSHI KAJINO AT IBM TRL ALREADY PUBLICLY AVAILABLE,
E.G., GRUEncoder/GRUDecoder, GrammarSeq2SeqVAE AND EVEN SOME METHODS OF GrammarGINVAE.
THIS MIGHT INFLUENCE THE DECISION OF THE FINAL LICENSE SO CAREFUL CHECK NEEDS BE DONE.
"""
import numpy as np
import logging
import torch
from torch.autograd import Variable
import torch.nn as nn
import torch.nn.functional as F
from torch.nn.modules.loss import _Loss
from torch_geometric.nn import MessagePassing
from torch_geometric.nn import global_add_pool
from ..graph_grammar.graph_grammar.symbols import NTSymbol
from ..graph_grammar.nn.encoder import EncoderBase
from ..graph_grammar.nn.decoder import DecoderBase
def get_atom_edge_feature_dims():
from torch_geometric.utils.smiles import x_map, e_map
func = lambda x: len(x[1])
return list(map(func, x_map.items())), list(map(func, e_map.items()))
class FeatureEmbedding(nn.Module):
def __init__(self, input_dims, embedded_dim):
super().__init__()
self.embedding_list = nn.ModuleList()
for dim in input_dims:
embedding = nn.Embedding(dim, embedded_dim)
self.embedding_list.append(embedding)
def forward(self, x):
output = 0
for i in range(x.shape[1]):
input = x[:, i].to(torch.int)
device = next(self.parameters()).device
if device != input.device:
input = input.to(device)
emb = self.embedding_list[i](input)
output += emb
return output
class GRUEncoder(EncoderBase):
def __init__(self, input_dim: int, hidden_dim: int, num_layers: int,
bidirectional: bool, dropout: float, batch_size: int, rank: int=-1,
no_dropout: bool=False):
super().__init__()
self.input_dim = input_dim
self.hidden_dim = hidden_dim
self.num_layers = num_layers
self.bidirectional = bidirectional
self.dropout = dropout
self.batch_size = batch_size
self.rank = rank
self.model = nn.GRU(input_size=self.input_dim,
hidden_size=self.hidden_dim,
num_layers=self.num_layers,
batch_first=True,
bidirectional=self.bidirectional,
dropout=self.dropout if not no_dropout else 0)
if self.rank >= 0:
if torch.cuda.is_available():
self.model = self.model.to(rank)
else:
# support mac mps
self.model = self.model.to(torch.device("mps", rank))
self.init_hidden(self.batch_size)
def init_hidden(self, bsize):
self.h0 = torch.zeros(((self.bidirectional + 1) * self.num_layers,
min(self.batch_size, bsize),
self.hidden_dim),
requires_grad=False)
if self.rank >= 0:
if torch.cuda.is_available():
self.h0 = self.h0.to(self.rank)
else:
# support mac mps
self.h0 = self.h0.to(torch.device("mps", self.rank))
def to(self, device):
newself = super().to(device)
newself.model = newself.model.to(device)
newself.h0 = newself.h0.to(device)
newself.rank = next(newself.parameters()).get_device()
return newself
def forward(self, in_seq_emb):
''' forward model
Parameters
----------
in_seq_emb : Tensor, shape (batch_size, max_len, input_dim)
Returns
-------
hidden_seq_emb : Tensor, shape (batch_size, max_len, 1 + bidirectional, hidden_dim)
'''
# Kishi: I think original MHG had this init_hidden()
self.init_hidden(in_seq_emb.size(0))
max_len = in_seq_emb.size(1)
hidden_seq_emb, self.h0 = self.model(
in_seq_emb, self.h0)
# As shown as returns, convert hidden_seq_emb: (batch_size, seq_len, (1 or 2) * hidden_size) -->
# (batch_size, seq_len, 1 or 2, hidden_size)
# In the original input the original GRU/LSTM with bidirectional encoding
# has contactinated tensors
# (first half for forward RNN, latter half for backward RNN)
# so convert them in a more friendly format packed for each RNN
hidden_seq_emb = hidden_seq_emb.view(-1,
max_len,
1 + self.bidirectional,
self.hidden_dim)
return hidden_seq_emb
class GRUDecoder(DecoderBase):
def __init__(self, input_dim: int, hidden_dim: int, num_layers: int,
dropout: float, batch_size: int, rank: int=-1,
no_dropout: bool=False):
super().__init__()
self.input_dim = input_dim
self.hidden_dim = hidden_dim
self.num_layers = num_layers
self.dropout = dropout
self.batch_size = batch_size
self.rank = rank
self.model = nn.GRU(input_size=self.input_dim,
hidden_size=self.hidden_dim,
num_layers=self.num_layers,
batch_first=True,
bidirectional=False,
dropout=self.dropout if not no_dropout else 0
)
if self.rank >= 0:
if torch.cuda.is_available():
self.model = self.model.to(self.rank)
else:
# support mac mps
self.model = self.model.to(torch.device("mps", self.rank))
self.init_hidden(self.batch_size)
def init_hidden(self, bsize):
self.hidden_dict['h'] = torch.zeros((self.num_layers,
min(self.batch_size, bsize),
self.hidden_dim),
requires_grad=False)
if self.rank >= 0:
if torch.cuda.is_available():
self.hidden_dict['h'] = self.hidden_dict['h'].to(self.rank)
else:
self.hidden_dict['h'] = self.hidden_dict['h'].to(torch.device("mps", self.rank))
def to(self, device):
newself = super().to(device)
newself.model = newself.model.to(device)
for k in self.hidden_dict.keys():
newself.hidden_dict[k] = newself.hidden_dict[k].to(device)
newself.rank = next(newself.parameters()).get_device()
return newself
def forward_one_step(self, tgt_emb_in):
''' one-step forward model
Parameters
----------
tgt_emb_in : Tensor, shape (batch_size, input_dim)
Returns
-------
Tensor, shape (batch_size, hidden_dim)
'''
bsize = tgt_emb_in.size(0)
tgt_emb_out, self.hidden_dict['h'] \
= self.model(tgt_emb_in.view(bsize, 1, -1),
self.hidden_dict['h'])
return tgt_emb_out
class NodeMLP(nn.Module):
def __init__(self, input_size, output_size, hidden_size):
super().__init__()
self.lin1 = nn.Linear(input_size, hidden_size)
self.nbat = nn.BatchNorm1d(hidden_size)
self.lin2 = nn.Linear(hidden_size, output_size)
def forward(self, x):
x = self.lin1(x)
x = self.nbat(x)
x = x.relu()
x = self.lin2(x)
return x
class GINLayer(MessagePassing):
def __init__(self, node_input_size, node_output_size, node_hidden_size, edge_input_size):
super().__init__()
self.node_mlp = NodeMLP(node_input_size, node_output_size, node_hidden_size)
self.edge_mlp = FeatureEmbedding(edge_input_size, node_output_size)
self.eps = nn.Parameter(torch.tensor([0.0]))
def forward(self, x, edge_index, edge_attr):
msg = self.propagate(edge_index, x=x ,edge_attr=edge_attr)
x = (1.0 + self.eps) * x + msg
x = x.relu()
x = self.node_mlp(x)
return x
def message(self, x_j, edge_attr):
edge_attr = self.edge_mlp(edge_attr)
x_j = x_j + edge_attr
x_j = x_j.relu()
return x_j
def update(self, aggr_out):
return aggr_out
#TODO implement the case where features of atoms and edges are considered
# Check GraphMVP and ogb (open graph benchmark) to realize this
class GIN(torch.nn.Module):
def __init__(self, node_feature_size, edge_feature_size, hidden_channels=64,
proximity_size=3, dropout=0.1):
super().__init__()
#print("(num node features, num edge features)=", (node_feature_size, edge_feature_size))
hsize = hidden_channels * 2
atom_dim, edge_dim = get_atom_edge_feature_dims()
self.trans = FeatureEmbedding(atom_dim, hidden_channels)
ml = []
for _ in range(proximity_size):
ml.append(GINLayer(hidden_channels, hidden_channels, hsize, edge_dim))
self.mlist = nn.ModuleList(ml)
#It is possible to calculate relu with x.relu() where x is an output
#self.activations = nn.ModuleList(actl)
self.dropout = dropout
self.proximity_size = proximity_size
def forward(self, x, edge_index, edge_attr, batch_size):
x = x.to(torch.float)
#print("before: edge_weight.shape=", edge_attr.shape)
edge_attr = edge_attr.to(torch.float)
#print("after: edge_weight.shape=", edge_attr.shape)
x = self.trans(x)
# TODO Check if this x is consistent with global_add_pool
hlist = [global_add_pool(x, batch_size)]
for id, m in enumerate(self.mlist):
x = m(x, edge_index=edge_index, edge_attr=edge_attr)
#print("Done with one layer")
###if id != self.proximity_size - 1:
x = x.relu()
x = F.dropout(x, p=self.dropout, training=self.training)
#h = global_mean_pool(x, batch_size)
h = global_add_pool(x, batch_size)
hlist.append(h)
#print("Done with one relu call: x.shape=", x.shape)
#print("calling golbal mean pool")
#print("calling dropout x.shape=", x.shape)
#print("x=", x)
#print("hlist[0].shape=", hlist[0].shape)
x = torch.cat(hlist, dim=1)
#print("x.shape=", x.shape)
x = F.dropout(x, p=self.dropout, training=self.training)
return x
# TODO copied from MHG implementation and adapted here.
class GrammarSeq2SeqVAE(nn.Module):
'''
Variational seq2seq with grammar.
TODO: rewrite this class using mixin
'''
def __init__(self, hrg, rank=-1, latent_dim=64, max_len=80,
batch_size=64, padding_idx=-1,
encoder_params={'hidden_dim': 384, 'num_layers': 3, 'bidirectional': True,
'dropout': 0.1},
decoder_params={'hidden_dim': 384, #'num_layers': 2,
'num_layers': 3,
'dropout': 0.1},
prod_rule_embed_params={'out_dim': 128},
no_dropout=False):
super().__init__()
# TODO USE GRU FOR ENCODING AND DECODING
self.hrg = hrg
self.rank = rank
self.prod_rule_corpus = hrg.prod_rule_corpus
self.prod_rule_embed_params = prod_rule_embed_params
self.vocab_size = hrg.num_prod_rule + 1
self.batch_size = batch_size
self.padding_idx = np.mod(padding_idx, self.vocab_size)
self.no_dropout = no_dropout
self.latent_dim = latent_dim
self.max_len = max_len
self.encoder_params = encoder_params
self.decoder_params = decoder_params
# TODO Simple embedding is used. Check if a domain-dependent embedding works or not.
embed_out_dim = self.prod_rule_embed_params['out_dim']
#use MolecularProdRuleEmbedding later on
self.src_embedding = nn.Embedding(self.vocab_size, embed_out_dim,
padding_idx=self.padding_idx)
self.tgt_embedding = nn.Embedding(self.vocab_size, embed_out_dim,
padding_idx=self.padding_idx)
# USE a GRU-based encoder in MHG
self.encoder = GRUEncoder(input_dim=embed_out_dim, batch_size=self.batch_size,
rank=self.rank, no_dropout=self.no_dropout,
**self.encoder_params)
lin_dim = (self.encoder_params.get('bidirectional', False) + 1) * self.encoder_params['hidden_dim']
lin_out_dim = self.latent_dim
self.hidden2mean = nn.Linear(lin_dim, lin_out_dim, bias=False)
self.hidden2logvar = nn.Linear(lin_dim, lin_out_dim)
# USE a GRU-based decoder in MHG
self.decoder = GRUDecoder(input_dim=embed_out_dim, batch_size=self.batch_size,
rank=self.rank, no_dropout=self.no_dropout, **self.decoder_params)
self.latent2tgt_emb = nn.Linear(self.latent_dim, embed_out_dim)
self.latent2hidden_dict = nn.ModuleDict()
dec_lin_out_dim = self.decoder_params['hidden_dim']
for each_hidden in self.decoder.hidden_dict.keys():
self.latent2hidden_dict[each_hidden] = nn.Linear(self.latent_dim, dec_lin_out_dim)
if self.rank >= 0:
if torch.cuda.is_available():
self.latent2hidden_dict[each_hidden] = self.latent2hidden_dict[each_hidden].to(self.rank)
else:
# support mac mps
self.latent2hidden_dict[each_hidden] = self.latent2hidden_dict[each_hidden].to(torch.device("mps", self.rank))
self.dec2vocab = nn.Linear(dec_lin_out_dim, self.vocab_size)
self.encoder.init_hidden(self.batch_size)
self.decoder.init_hidden(self.batch_size)
# TODO Do we need this?
if hasattr(self.src_embedding, 'weight'):
self.src_embedding.weight.data.uniform_(-0.1, 0.1)
if hasattr(self.tgt_embedding, 'weight'):
self.tgt_embedding.weight.data.uniform_(-0.1, 0.1)
self.encoder.init_hidden(self.batch_size)
self.decoder.init_hidden(self.batch_size)
def to(self, device):
newself = super().to(device)
newself.src_embedding = newself.src_embedding.to(device)
newself.tgt_embedding = newself.tgt_embedding.to(device)
newself.encoder = newself.encoder.to(device)
newself.decoder = newself.decoder.to(device)
newself.dec2vocab = newself.dec2vocab.to(device)
newself.hidden2mean = newself.hidden2mean.to(device)
newself.hidden2logvar = newself.hidden2logvar.to(device)
newself.latent2tgt_emb = newself.latent2tgt_emb.to(device)
newself.latent2hidden_dict = newself.latent2hidden_dict.to(device)
return newself
def forward(self, in_seq, out_seq):
''' forward model
Parameters
----------
in_seq : Variable, shape (batch_size, length)
each element corresponds to word index.
where the index should be less than `vocab_size`
Returns
-------
Variable, shape (batch_size, length, vocab_size)
logit of each word (applying softmax yields the probability)
'''
mu, logvar = self.encode(in_seq)
z = self.reparameterize(mu, logvar)
return self.decode(z, out_seq), mu, logvar
def encode(self, in_seq):
src_emb = self.src_embedding(in_seq)
src_h = self.encoder.forward(src_emb)
if self.encoder_params.get('bidirectional', False):
concat_src_h = torch.cat((src_h[:, -1, 0, :], src_h[:, 0, 1, :]), dim=1)
return self.hidden2mean(concat_src_h), self.hidden2logvar(concat_src_h)
else:
return self.hidden2mean(src_h[:, -1, :]), self.hidden2logvar(src_h[:, -1, :])
def reparameterize(self, mu, logvar, training=True):
if training:
std = logvar.mul(0.5).exp_()
device = next(self.parameters()).device
eps = Variable(std.data.new(std.size()).normal_())
if device != eps.get_device():
eps.to(device)
return eps.mul(std).add_(mu)
else:
return mu
#TODO Not tested. Need to implement this in case of molecular structure generation
def sample(self, sample_size=-1, deterministic=True, return_z=False):
self.eval()
self.init_hidden()
if sample_size == -1:
sample_size = self.batch_size
num_iter = int(np.ceil(sample_size / self.batch_size))
hg_list = []
z_list = []
for _ in range(num_iter):
z = Variable(torch.normal(
torch.zeros(self.batch_size, self.latent_dim),
torch.ones(self.batch_size * self.latent_dim))).cuda()
_, each_hg_list = self.decode(z, deterministic=deterministic)
z_list.append(z)
hg_list += each_hg_list
z = torch.cat(z_list)[:sample_size]
hg_list = hg_list[:sample_size]
if return_z:
return hg_list, z.cpu().detach().numpy()
else:
return hg_list
def decode(self, z=None, out_seq=None, deterministic=True):
if z is None:
z = Variable(torch.normal(
torch.zeros(self.batch_size, self.latent_dim),
torch.ones(self.batch_size * self.latent_dim)))
if self.rank >= 0:
z = z.to(next(self.parameters()).device)
hidden_dict_0 = {}
for each_hidden in self.latent2hidden_dict.keys():
hidden_dict_0[each_hidden] = self.latent2hidden_dict[each_hidden](z)
bsize = z.size(0)
self.decoder.init_hidden(bsize)
self.decoder.feed_hidden(hidden_dict_0)
if out_seq is not None:
tgt_emb0 = self.latent2tgt_emb(z)
tgt_emb0 = tgt_emb0.view(tgt_emb0.shape[0], 1, tgt_emb0.shape[1])
out_seq_emb = self.tgt_embedding(out_seq)
tgt_emb = torch.cat((tgt_emb0, out_seq_emb), dim=1)[:, :-1, :]
tgt_emb_pred_list = []
for each_idx in range(self.max_len):
tgt_emb_pred = self.decoder.forward_one_step(tgt_emb[:, each_idx, :].view(bsize, 1, -1))
tgt_emb_pred_list.append(tgt_emb_pred)
vocab_logit = self.dec2vocab(torch.cat(tgt_emb_pred_list, dim=1))
return vocab_logit
else:
with torch.no_grad():
tgt_emb = self.latent2tgt_emb(z)
tgt_emb = tgt_emb.view(tgt_emb.shape[0], 1, tgt_emb.shape[1])
tgt_emb_pred_list = []
stack_list = []
hg_list = []
nt_symbol_list = []
nt_edge_list = []
gen_finish_list = []
for _ in range(bsize):
stack_list.append([])
hg_list.append(None)
nt_symbol_list.append(NTSymbol(degree=0,
is_aromatic=False,
bond_symbol_list=[]))
nt_edge_list.append(None)
gen_finish_list.append(False)
for idx in range(self.max_len):
tgt_emb_pred = self.decoder.forward_one_step(tgt_emb)
tgt_emb_pred_list.append(tgt_emb_pred)
vocab_logit = self.dec2vocab(tgt_emb_pred)
for each_batch_idx in range(bsize):
if not gen_finish_list[each_batch_idx]: # if generation has not finished
# get production rule greedily
prod_rule = self.hrg.prod_rule_corpus.sample(vocab_logit[each_batch_idx, :, :-1].squeeze().cpu().numpy(),
nt_symbol_list[each_batch_idx],
deterministic=deterministic)
# convert production rule into an index
tgt_id = self.hrg.prod_rule_list.index(prod_rule)
# apply the production rule
hg_list[each_batch_idx], nt_edges = prod_rule.applied_to(hg_list[each_batch_idx], nt_edge_list[each_batch_idx])
# add non-terminals to the stack
stack_list[each_batch_idx].extend(nt_edges[::-1])
# if the stack size is 0, generation has finished!
if len(stack_list[each_batch_idx]) == 0:
gen_finish_list[each_batch_idx] = True
else:
nt_edge_list[each_batch_idx] = stack_list[each_batch_idx].pop()
nt_symbol_list[each_batch_idx] = hg_list[each_batch_idx].edge_attr(nt_edge_list[each_batch_idx])['symbol']
else:
tgt_id = np.mod(self.padding_idx, self.vocab_size)
indice_tensor = torch.LongTensor([tgt_id])
device = next(self.parameters()).device
if indice_tensor.device != device:
indice_tensor = indice_tensor.to(device)
tgt_emb[each_batch_idx, :] = self.tgt_embedding(indice_tensor)
vocab_logit = self.dec2vocab(torch.cat(tgt_emb_pred_list, dim=1))
#for id, v in enumerate(gen_finish_list):
#if not v:
# print("bacth id={} not finished generating a sequence: ".format(id))
return gen_finish_list, vocab_logit, hg_list
# TODO A lot of duplicates with GrammarVAE. Clean up it if necessary
class GrammarGINVAE(nn.Module):
'''
Variational autoencoder based on GIN and grammar
'''
def __init__(self, hrg, rank=-1, max_len=80,
batch_size=64, padding_idx=-1,
encoder_params={'node_feature_size': 4, 'edge_feature_size': 3,
'hidden_channels': 64, 'proximity_size': 3,
'dropout': 0.1},
decoder_params={'hidden_dim': 384, 'num_layers': 3,
'dropout': 0.1},
prod_rule_embed_params={'out_dim': 128},
no_dropout=False):
super().__init__()
# TODO USE GRU FOR ENCODING AND DECODING
self.hrg = hrg
self.rank = rank
self.prod_rule_corpus = hrg.prod_rule_corpus
self.prod_rule_embed_params = prod_rule_embed_params
self.vocab_size = hrg.num_prod_rule + 1
self.batch_size = batch_size
self.padding_idx = np.mod(padding_idx, self.vocab_size)
self.no_dropout = no_dropout
self.max_len = max_len
self.encoder_params = encoder_params
self.decoder_params = decoder_params
# TODO Simple embedding is used. Check if a domain-dependent embedding works or not.
embed_out_dim = self.prod_rule_embed_params['out_dim']
#use MolecularProdRuleEmbedding later on
self.tgt_embedding = nn.Embedding(self.vocab_size, embed_out_dim,
padding_idx=self.padding_idx)
self.encoder = GIN(**self.encoder_params)
self.latent_dim = self.encoder_params['hidden_channels']
self.proximity_size = self.encoder_params['proximity_size']
hidden_dim = self.decoder_params['hidden_dim']
self.hidden2mean = nn.Linear(self.latent_dim * (1 + self.proximity_size), self.latent_dim, bias=False)
self.hidden2logvar = nn.Linear(self.latent_dim * (1 + self.proximity_size), self.latent_dim)
self.decoder = GRUDecoder(input_dim=embed_out_dim, batch_size=self.batch_size,
rank=self.rank, no_dropout=self.no_dropout, **self.decoder_params)
self.latent2tgt_emb = nn.Linear(self.latent_dim, embed_out_dim)
self.latent2hidden_dict = nn.ModuleDict()
for each_hidden in self.decoder.hidden_dict.keys():
self.latent2hidden_dict[each_hidden] = nn.Linear(self.latent_dim, hidden_dim)
if self.rank >= 0:
if torch.cuda.is_available():
self.latent2hidden_dict[each_hidden] = self.latent2hidden_dict[each_hidden].to(self.rank)
else:
# support mac mps
self.latent2hidden_dict[each_hidden] = self.latent2hidden_dict[each_hidden].to(torch.device("mps", self.rank))
self.dec2vocab = nn.Linear(hidden_dim, self.vocab_size)
self.decoder.init_hidden(self.batch_size)
# TODO Do we need this?
if hasattr(self.tgt_embedding, 'weight'):
self.tgt_embedding.weight.data.uniform_(-0.1, 0.1)
self.decoder.init_hidden(self.batch_size)
def to(self, device):
newself = super().to(device)
newself.encoder = newself.encoder.to(device)
newself.decoder = newself.decoder.to(device)
newself.rank = next(newself.encoder.parameters()).get_device()
return newself
def forward(self, x, edge_index, edge_attr, batch_size, out_seq=None, sched_prob = None):
mu, logvar = self.encode(x, edge_index, edge_attr, batch_size)
z = self.reparameterize(mu, logvar)
return self.decode(z, out_seq, sched_prob=sched_prob), mu, logvar
#TODO Not tested. Need to implement this in case of molecular structure generation
def sample(self, sample_size=-1, deterministic=True, return_z=False):
self.eval()
self.init_hidden()
if sample_size == -1:
sample_size = self.batch_size
num_iter = int(np.ceil(sample_size / self.batch_size))
hg_list = []
z_list = []
for _ in range(num_iter):
z = Variable(torch.normal(
torch.zeros(self.batch_size, self.latent_dim),
torch.ones(self.batch_size * self.latent_dim))).cuda()
_, each_hg_list = self.decode(z, deterministic=deterministic)
z_list.append(z)
hg_list += each_hg_list
z = torch.cat(z_list)[:sample_size]
hg_list = hg_list[:sample_size]
if return_z:
return hg_list, z.cpu().detach().numpy()
else:
return hg_list
def decode(self, z=None, out_seq=None, deterministic=True, sched_prob=None):
if z is None:
z = Variable(torch.normal(
torch.zeros(self.batch_size, self.latent_dim),
torch.ones(self.batch_size * self.latent_dim)))
if self.rank >= 0:
z = z.to(next(self.parameters()).device)
hidden_dict_0 = {}
for each_hidden in self.latent2hidden_dict.keys():
hidden_dict_0[each_hidden] = self.latent2hidden_dict[each_hidden](z)
bsize = z.size(0)
self.decoder.init_hidden(bsize)
self.decoder.feed_hidden(hidden_dict_0)
if out_seq is not None:
tgt_emb0 = self.latent2tgt_emb(z)
tgt_emb0 = tgt_emb0.view(tgt_emb0.shape[0], 1, tgt_emb0.shape[1])
out_seq_emb = self.tgt_embedding(out_seq)
tgt_emb = torch.cat((tgt_emb0, out_seq_emb), dim=1)[:, :-1, :]
tgt_emb_pred_list = []
tgt_emb_pred = None
for each_idx in range(self.max_len):
if tgt_emb_pred is None or sched_prob is None or torch.rand(1)[0] <= sched_prob:
inp = tgt_emb[:, each_idx, :].view(bsize, 1, -1)
else:
cur_logit = self.dec2vocab(tgt_emb_pred)
yi = torch.argmax(cur_logit, dim=2)
inp = self.tgt_embedding(yi)
tgt_emb_pred = self.decoder.forward_one_step(inp)
tgt_emb_pred_list.append(tgt_emb_pred)
vocab_logit = self.dec2vocab(torch.cat(tgt_emb_pred_list, dim=1))
return vocab_logit
else:
with torch.no_grad():
tgt_emb = self.latent2tgt_emb(z)
tgt_emb = tgt_emb.view(tgt_emb.shape[0], 1, tgt_emb.shape[1])
tgt_emb_pred_list = []
stack_list = []
hg_list = []
nt_symbol_list = []
nt_edge_list = []
gen_finish_list = []
for _ in range(bsize):
stack_list.append([])
hg_list.append(None)
nt_symbol_list.append(NTSymbol(degree=0,
is_aromatic=False,
bond_symbol_list=[]))
nt_edge_list.append(None)
gen_finish_list.append(False)
for _ in range(self.max_len):
tgt_emb_pred = self.decoder.forward_one_step(tgt_emb)
tgt_emb_pred_list.append(tgt_emb_pred)
vocab_logit = self.dec2vocab(tgt_emb_pred)
for each_batch_idx in range(bsize):
if not gen_finish_list[each_batch_idx]: # if generation has not finished
# get production rule greedily
prod_rule = self.hrg.prod_rule_corpus.sample(vocab_logit[each_batch_idx, :, :-1].squeeze().cpu().numpy(),
nt_symbol_list[each_batch_idx],
deterministic=deterministic)
# convert production rule into an index
tgt_id = self.hrg.prod_rule_list.index(prod_rule)
# apply the production rule
hg_list[each_batch_idx], nt_edges = prod_rule.applied_to(hg_list[each_batch_idx], nt_edge_list[each_batch_idx])
# add non-terminals to the stack
stack_list[each_batch_idx].extend(nt_edges[::-1])
# if the stack size is 0, generation has finished!
if len(stack_list[each_batch_idx]) == 0:
gen_finish_list[each_batch_idx] = True
else:
nt_edge_list[each_batch_idx] = stack_list[each_batch_idx].pop()
nt_symbol_list[each_batch_idx] = hg_list[each_batch_idx].edge_attr(nt_edge_list[each_batch_idx])['symbol']
else:
tgt_id = np.mod(self.padding_idx, self.vocab_size)
indice_tensor = torch.LongTensor([tgt_id])
if self.rank >= 0:
indice_tensor = indice_tensor.to(next(self.parameters()).device)
tgt_emb[each_batch_idx, :] = self.tgt_embedding(indice_tensor)
vocab_logit = self.dec2vocab(torch.cat(tgt_emb_pred_list, dim=1))
return gen_finish_list, vocab_logit, hg_list
#TODO Not tested. Need to implement this in case of molecular structure generation
def conditional_distribution(self, z, tgt_id_list):
self.eval()
self.init_hidden()
z = z.cuda()
hidden_dict_0 = {}
for each_hidden in self.latent2hidden_dict.keys():
hidden_dict_0[each_hidden] = self.latent2hidden_dict[each_hidden](z)
self.decoder.feed_hidden(hidden_dict_0)
with torch.no_grad():
tgt_emb = self.latent2tgt_emb(z)
tgt_emb = tgt_emb.view(tgt_emb.shape[0], 1, tgt_emb.shape[1])
nt_symbol_list = []
stack_list = []
hg_list = []
nt_edge_list = []
gen_finish_list = []
for _ in range(self.batch_size):
nt_symbol_list.append(NTSymbol(degree=0,
is_aromatic=False,
bond_symbol_list=[]))
stack_list.append([])
hg_list.append(None)
nt_edge_list.append(None)
gen_finish_list.append(False)
for each_position in range(len(tgt_id_list[0])):
tgt_emb_pred = self.decoder.forward_one_step(tgt_emb)
for each_batch_idx in range(self.batch_size):
if not gen_finish_list[each_batch_idx]: # if generation has not finished
# use the prespecified target ids
tgt_id = tgt_id_list[each_batch_idx][each_position]
prod_rule = self.hrg.prod_rule_list[tgt_id]
# apply the production rule
hg_list[each_batch_idx], nt_edges = prod_rule.applied_to(hg_list[each_batch_idx], nt_edge_list[each_batch_idx])
# add non-terminals to the stack
stack_list[each_batch_idx].extend(nt_edges[::-1])
# if the stack size is 0, generation has finished!
if len(stack_list[each_batch_idx]) == 0:
gen_finish_list[each_batch_idx] = True
else:
nt_edge_list[each_batch_idx] = stack_list[each_batch_idx].pop()
nt_symbol_list[each_batch_idx] = hg_list[each_batch_idx].edge_attr(nt_edge_list[each_batch_idx])['symbol']
else:
tgt_id = np.mod(self.padding_idx, self.vocab_size)
indice_tensor = torch.LongTensor([tgt_id])
indice_tensor = indice_tensor.cuda()
tgt_emb[each_batch_idx, :] = self.tgt_embedding(indice_tensor)
# last one step
conditional_logprob_list = []
tgt_emb_pred = self.decoder.forward_one_step(tgt_emb)
vocab_logit = self.dec2vocab(tgt_emb_pred)
for each_batch_idx in range(self.batch_size):
if not gen_finish_list[each_batch_idx]: # if generation has not finished
# get production rule greedily
masked_logprob = self.hrg.prod_rule_corpus.masked_logprob(
vocab_logit[each_batch_idx, :, :-1].squeeze().cpu().numpy(),
nt_symbol_list[each_batch_idx])
conditional_logprob_list.append(masked_logprob)
else:
conditional_logprob_list.append(None)
return conditional_logprob_list
#TODO Not tested. Need to implement this in case of molecular structure generation
def decode_with_beam_search(self, z, beam_width=1):
''' Decode a latent vector using beam search.
Parameters
----------
z
latent vector
beam_width : int
parameter for beam search
Returns
-------
List of Hypergraphs
'''
if self.batch_size != 1:
raise ValueError('this method works only under batch_size=1')
if self.padding_idx != -1:
raise ValueError('this method works only under padding_idx=-1')
top_k_tgt_id_list = [[]] * beam_width
logprob_list = [0.] * beam_width
for each_len in range(self.max_len):
expanded_logprob_list = np.repeat(logprob_list, self.vocab_size) # including padding_idx
expanded_length_list = np.array([0] * (beam_width * self.vocab_size))
for each_beam_idx, each_candidate in enumerate(top_k_tgt_id_list):
conditional_logprob = self.conditional_distribution(z, [each_candidate])[0]
if conditional_logprob is None:
expanded_logprob_list[(each_beam_idx + 1) * self.vocab_size - 1]\
= logprob_list[each_beam_idx]
expanded_logprob_list[each_beam_idx * self.vocab_size : (each_beam_idx + 1) * self.vocab_size - 1]\
= -np.inf
expanded_length_list[each_beam_idx * self.vocab_size : (each_beam_idx + 1) * self.vocab_size]\
= len(each_candidate)
else:
expanded_logprob_list[each_beam_idx * self.vocab_size : (each_beam_idx + 1) * self.vocab_size - 1]\
= logprob_list[each_beam_idx] + conditional_logprob
expanded_logprob_list[(each_beam_idx + 1) * self.vocab_size - 1]\
= -np.inf
expanded_length_list[each_beam_idx * self.vocab_size : (each_beam_idx + 1) * self.vocab_size]\
= len(each_candidate) + 1
score_list = np.array(expanded_logprob_list) / np.array(expanded_length_list)
if each_len == 0:
top_k_list = np.argsort(score_list[:self.vocab_size])[::-1][:beam_width]
else:
top_k_list = np.argsort(score_list)[::-1][:beam_width]
next_top_k_tgt_id_list = []
next_logprob_list = []
for each_top_k in top_k_list:
beam_idx = each_top_k // self.vocab_size
vocab_idx = each_top_k % self.vocab_size
if vocab_idx == self.vocab_size - 1:
next_top_k_tgt_id_list.append(top_k_tgt_id_list[beam_idx])
next_logprob_list.append(expanded_logprob_list[each_top_k])
else:
next_top_k_tgt_id_list.append(top_k_tgt_id_list[beam_idx] + [vocab_idx])
next_logprob_list.append(expanded_logprob_list[each_top_k])
top_k_tgt_id_list = next_top_k_tgt_id_list
logprob_list = next_logprob_list
# construct hypergraphs
hg_list = []
for each_tgt_id_list in top_k_tgt_id_list:
hg = None
stack = []
nt_edge = None
for each_idx, each_prod_rule_id in enumerate(each_tgt_id_list):
prod_rule = self.hrg.prod_rule_list[each_prod_rule_id]
hg, nt_edges = prod_rule.applied_to(hg, nt_edge)
stack.extend(nt_edges[::-1])
try:
nt_edge = stack.pop()
except IndexError:
if each_idx == len(each_tgt_id_list) - 1:
break
else:
raise ValueError('some bugs')
hg_list.append(hg)
return hg_list
def graph_embed(self, x, edge_index, edge_attr, batch_size):
src_h = self.encoder.forward(x, edge_index, edge_attr, batch_size)
return src_h
def encode(self, x, edge_index, edge_attr, batch_size):
#print("device for src_emb=", src_emb.get_device())
#print("device for self.encoder=", next(self.encoder.parameters()).get_device())
src_h = self.graph_embed(x, edge_index, edge_attr, batch_size)
mu, lv = self.get_mean_var(src_h)
return mu, lv
def get_mean_var(self, src_h):
#src_h = torch.tanh(src_h)
mu = self.hidden2mean(src_h)
lv = self.hidden2logvar(src_h)
mu = torch.tanh(mu)
lv = torch.tanh(lv)
return mu, lv
def reparameterize(self, mu, logvar, training=True):
if training:
std = logvar.mul(0.5).exp_()
eps = Variable(std.data.new(std.size()).normal_())
if self.rank >= 0:
eps = eps.to(next(self.parameters()).device)
return eps.mul(std).add_(mu)
else:
return mu
# Copied from the MHG implementation and adapted
class GrammarVAELoss(_Loss):
'''
a loss function for Grammar VAE
Attributes
----------
hrg : HyperedgeReplacementGrammar
beta : float
coefficient of KL divergence
'''
def __init__(self, rank, hrg, beta=1.0, **kwargs):
super().__init__(**kwargs)
self.hrg = hrg
self.beta = beta
self.rank = rank
def forward(self, mu, logvar, in_seq_pred, in_seq):
''' compute VAE loss
Parameters
----------
in_seq_pred : torch.Tensor, shape (batch_size, max_len, vocab_size)
logit
in_seq : torch.Tensor, shape (batch_size, max_len)
each element corresponds to a word id in vocabulary.
mu : torch.Tensor, shape (batch_size, hidden_dim)
logvar : torch.Tensor, shape (batch_size, hidden_dim)
mean and log variance of the normal distribution
'''
batch_size = in_seq_pred.shape[0]
max_len = in_seq_pred.shape[1]
vocab_size = in_seq_pred.shape[2]
mask = torch.zeros(in_seq_pred.shape)
for each_batch in range(batch_size):
flag = True
for each_idx in range(max_len):
prod_rule_idx = in_seq[each_batch, each_idx]
if prod_rule_idx == vocab_size - 1:
#### DETERMINE WHETHER THIS SHOULD BE SKIPPED OR NOT
mask[each_batch, each_idx, prod_rule_idx] = 1
#break
continue
lhs = self.hrg.prod_rule_corpus.prod_rule_list[prod_rule_idx].lhs_nt_symbol
lhs_idx = self.hrg.prod_rule_corpus.nt_symbol_list.index(lhs)
mask[each_batch, each_idx, :-1] = torch.FloatTensor(self.hrg.prod_rule_corpus.lhs_in_prod_rule[lhs_idx])
if self.rank >= 0:
mask = mask.to(next(self.parameters()).device)
in_seq_pred = mask * in_seq_pred
cross_entropy = F.cross_entropy(
in_seq_pred.view(-1, vocab_size),
in_seq.view(-1),
reduction='sum',
#ignore_index=self.ignore_index if self.ignore_index is not None else -100
)
kl_div = -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp())
return cross_entropy + self.beta * kl_div
class VAELoss(_Loss):
def __init__(self, beta=0.01):
super().__init__()
self.beta = beta
def forward(self, mean, log_var, dec_outputs, targets):
device = mean.get_device()
if device >= 0:
targets = targets.to(mean.get_device())
reconstruction = F.cross_entropy(dec_outputs.view(-1, dec_outputs.size(2)), targets.view(-1), reduction='sum')
KL = 0.5 * torch.sum(1 + log_var - mean ** 2 - torch.exp(log_var))
loss = - self.beta * KL + reconstruction
return loss