blumenstiel
commited on
Commit
·
e25d381
1
Parent(s):
36f6e0e
Add inference code
Browse files- .gitattributes +1 -0
- Prithvi_EO_V2_300_TL_config.yaml +21 -0
- README.md +54 -0
- inference.py +525 -0
- prithvi_mae.py +736 -0
- requirements.txt +5 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
*.tif filter=lfs diff=lfs merge=lfs -text
|
Prithvi_EO_V2_300_TL_config.yaml
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
DATA:
|
2 |
+
BANDS: [B02, B03, B04, B05, B06, B07]
|
3 |
+
INPUT_SIZE: [4, 224, 224]
|
4 |
+
MASK_RATIO: 0.75
|
5 |
+
MEAN: [1087.0, 1342.0, 1433.0, 2734.0, 1958.0, 1363.0]
|
6 |
+
STD: [2248.0, 2179.0, 2178.0, 1850.0, 1242.0, 1049.0]
|
7 |
+
MODEL:
|
8 |
+
COORDS_DROP_RATE: 0.1
|
9 |
+
COORDS_ENCODING: [time, location]
|
10 |
+
COORDS_SCALE_LEARN: true
|
11 |
+
DECODER_DEPTH: 8
|
12 |
+
DECODER_EMBED_DIM: 512
|
13 |
+
DECODER_NUM_HEADS: 16
|
14 |
+
DEPTH: 24
|
15 |
+
DROP_CHANNELS_RATE: 0.0
|
16 |
+
EMBED_DIM: 1024
|
17 |
+
MLP_RATIO: 4.0
|
18 |
+
NAME: vit_l
|
19 |
+
NORM_PIX_LOSS: false
|
20 |
+
NUM_HEADS: 16
|
21 |
+
PATCH_SIZE: [1, 16, 16]
|
README.md
CHANGED
@@ -1,3 +1,57 @@
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
---
|
4 |
+
|
5 |
+
### Model and Inputs
|
6 |
+
Prithvi is a first-of-its-kind temporal Vision transformer pre-trained by the IBM and NASA team on contiguous US Harmonised Landsat Sentinel 2 (HLS) data. The model adopts a self-supervised encoder developed with a ViT architecture and Masked AutoEncoder (MAE) learning strategy, with an MSE loss function. The model includes spatial attention across multiple patches and also temporal attention for each patch.
|
7 |
+
|
8 |
+
![](GFM.png)
|
9 |
+
|
10 |
+
The model accepts remote sensing data in a video format (B, C, T, H, W). Note that the temporal dimension (T) is very important in this application and not present in most other works around remote sensing modeling. The ability to handle a time series of remote sensing images can benefit a variety of downstream tasks (e.g. Burn Scars segmentation, Flood Segmentation, Land Cover Classification). The model can also handle static imagery which can be fed into the model with T=1.
|
11 |
+
|
12 |
+
### Pre-training
|
13 |
+
The model was pre-trained with NASA's HLS V2 L30 product (30m granularity) from the contiguous United States. The bands that were used are the following:
|
14 |
+
|
15 |
+
1. Blue
|
16 |
+
2. Green
|
17 |
+
3. Red
|
18 |
+
4. Narrow NIR
|
19 |
+
5. SWIR 1
|
20 |
+
6. SWIR 2
|
21 |
+
|
22 |
+
### Code
|
23 |
+
The model follows the [original MAE repo](https://github.com/facebookresearch/mae) with some modifications including:
|
24 |
+
|
25 |
+
1. replace 2D patch embed with 3D patch embed;
|
26 |
+
2. replace 2D positional embed with 3D positional embed;
|
27 |
+
3. replace 2D patchify and unpatchify with 3D.
|
28 |
+
4. adding infrared bands besides RGB
|
29 |
+
|
30 |
+
### Inference and demo
|
31 |
+
There is an inference script (`Prithvi_run_inference.py`) that allows to run the image reconstruction on a set of HLS images assumed to be from the same location at different time steps(see example below). These should be provided in chronological order in geotiff format, including the channels described above (Blue, Green, Red, Narrow NIR, SWIR 1, SWIR 2) in reflectance units. There is also a **demo** that leverages the same code [here](https://huggingface.co/spaces/ibm-nasa-geospatial/Prithvi-100M-demo).
|
32 |
+
|
33 |
+
```
|
34 |
+
python Prithvi_run_inference.py --data_files t1.tif t2.tif t3.tif --yaml_file_path /path/to/yaml/Prithvi_100.yaml --checkpoint /path/to/checkpoint/Prithvi_100.pth --output_dir /path/to/out/dir/ --input_indices <space separated 0-based indices of channels to select from input> --mask_ratio 0.5 --img_size <length of one side of square input shape>
|
35 |
+
```
|
36 |
+
|
37 |
+
This demo is a starting point that can be used as a starting point to generalize to different input shapes / types.
|
38 |
+
|
39 |
+
### Finetuning examples
|
40 |
+
Examples of finetuning the model for image segmentation using the mmsegmentation library are available through Hugging Face (e.g. [burn scars segmentation](https://huggingface.co/ibm-nasa-geospatial/Prithvi-100M-burn-scar), [flood mapping](https://huggingface.co/ibm-nasa-geospatial/Prithvi-100M-sen1floods11), and [multi temporal crop classification](https://huggingface.co/ibm-nasa-geospatial/Prithvi-100M-multi-temporal-crop-classification)), with the code used for the experiments available on [github](https://github.com/NASA-IMPACT/hls-foundation-os/tree/main/fine-tuning-examples). This also contains instructions to finetune the model for flood detection on the popular open access [sen1floods11 dataset](https://github.com/cloudtostreet/Sen1Floods11).
|
41 |
+
|
42 |
+
### Feedback
|
43 |
+
|
44 |
+
Your feedback is invaluable to us. If you have any feedback about the model, please feel free to share it with us. You can do this by submitting issues on our open-source repository, [hls-foundation-os](https://github.com/NASA-IMPACT/hls-foundation-os/issues), on GitHub.
|
45 |
+
|
46 |
+
### Citation
|
47 |
+
|
48 |
+
If this model helped your research, please cite `Prithvi-V2` in your publications. Here are two BibTeX entries as examples:
|
49 |
+
|
50 |
+
```
|
51 |
+
@article{Prithvi-2-preprint,
|
52 |
+
author = {},
|
53 |
+
title = {{Title}},
|
54 |
+
journal = {Preprint Available on arxiv},
|
55 |
+
year = {2024}
|
56 |
+
}
|
57 |
+
```
|
inference.py
ADDED
@@ -0,0 +1,525 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import functools
|
3 |
+
import os
|
4 |
+
from typing import List, Union
|
5 |
+
import re
|
6 |
+
import datetime
|
7 |
+
import numpy as np
|
8 |
+
import pandas as pd
|
9 |
+
import rasterio
|
10 |
+
import torch
|
11 |
+
import yaml
|
12 |
+
from einops import rearrange
|
13 |
+
|
14 |
+
from functools import partial
|
15 |
+
from prithvi_mae import PrithviMAE
|
16 |
+
|
17 |
+
NO_DATA = -9999
|
18 |
+
NO_DATA_FLOAT = 0.0001
|
19 |
+
OFFSET = 0
|
20 |
+
PERCENTILE = 99.9
|
21 |
+
|
22 |
+
|
23 |
+
def process_channel_group(orig_img, new_img, channels, mean, std):
|
24 |
+
"""Process *orig_img* and *new_img* for RGB visualization. Each band is rescaled back to the
|
25 |
+
original range using *data_mean* and *data_std* and then lowest and highest percentiles are
|
26 |
+
removed to enhance contrast. Data is rescaled to (0, 1) range and stacked channels_first.
|
27 |
+
|
28 |
+
Args:
|
29 |
+
orig_img: torch.Tensor representing original image (reference) with shape = (bands, H, W).
|
30 |
+
new_img: torch.Tensor representing image with shape = (bands, H, W).
|
31 |
+
channels: list of indices representing RGB channels.
|
32 |
+
mean: list of mean values for each band.
|
33 |
+
std: list of std values for each band.
|
34 |
+
|
35 |
+
Returns:
|
36 |
+
torch.Tensor with shape (num_channels, height, width) for original image
|
37 |
+
torch.Tensor with shape (num_channels, height, width) for the other image
|
38 |
+
"""
|
39 |
+
|
40 |
+
mean = torch.tensor(np.asarray(mean)[:, None, None]) # C H W
|
41 |
+
std = torch.tensor(np.asarray(std)[:, None, None])
|
42 |
+
orig_img = orig_img[channels, ...]
|
43 |
+
valid_mask = torch.ones_like(orig_img, dtype=torch.bool)
|
44 |
+
valid_mask[orig_img == NO_DATA_FLOAT] = False
|
45 |
+
|
46 |
+
# Back to original data range
|
47 |
+
orig_img = (orig_img * std[channels]) + mean[channels]
|
48 |
+
new_img = (new_img[channels, ...] * std[channels]) + mean[channels]
|
49 |
+
|
50 |
+
# Rescale (enhancing contrast)
|
51 |
+
max_value = max(3000, np.percentile(orig_img[valid_mask], PERCENTILE))
|
52 |
+
min_value = OFFSET
|
53 |
+
|
54 |
+
orig_img = torch.clamp((orig_img - min_value) / (max_value - min_value), 0, 1)
|
55 |
+
new_img = torch.clamp((new_img - min_value) / (max_value - min_value), 0, 1)
|
56 |
+
|
57 |
+
# No data as zeros
|
58 |
+
orig_img[~valid_mask] = 0
|
59 |
+
new_img[~valid_mask] = 0
|
60 |
+
|
61 |
+
return orig_img, new_img
|
62 |
+
|
63 |
+
|
64 |
+
def read_geotiff(file_path: str):
|
65 |
+
"""Read all bands from *file_path* and return image + meta info.
|
66 |
+
|
67 |
+
Args:
|
68 |
+
file_path: path to image file.
|
69 |
+
|
70 |
+
Returns:
|
71 |
+
np.ndarray with shape (bands, height, width)
|
72 |
+
meta info dict
|
73 |
+
"""
|
74 |
+
|
75 |
+
with rasterio.open(file_path) as src:
|
76 |
+
img = src.read()
|
77 |
+
meta = src.meta
|
78 |
+
coords = src.lnglat()
|
79 |
+
|
80 |
+
return img, meta, coords
|
81 |
+
|
82 |
+
|
83 |
+
def save_geotiff(image, output_path: str, meta: dict):
|
84 |
+
"""Save multi-band image in Geotiff file.
|
85 |
+
|
86 |
+
Args:
|
87 |
+
image: np.ndarray with shape (bands, height, width)
|
88 |
+
output_path: path where to save the image
|
89 |
+
meta: dict with meta info.
|
90 |
+
"""
|
91 |
+
|
92 |
+
with rasterio.open(output_path, "w", **meta) as dest:
|
93 |
+
for i in range(image.shape[0]):
|
94 |
+
dest.write(image[i, :, :], i + 1)
|
95 |
+
|
96 |
+
return
|
97 |
+
|
98 |
+
|
99 |
+
def _convert_np_uint8(float_image: torch.Tensor):
|
100 |
+
image = float_image.numpy() * 255.0
|
101 |
+
image = image.astype(dtype=np.uint8)
|
102 |
+
|
103 |
+
return image
|
104 |
+
|
105 |
+
|
106 |
+
def load_example(
|
107 |
+
file_paths: List[str],
|
108 |
+
mean: List[float],
|
109 |
+
std: List[float],
|
110 |
+
indices: Union[list[int], None] = None,
|
111 |
+
):
|
112 |
+
"""Build an input example by loading images in *file_paths*.
|
113 |
+
|
114 |
+
Args:
|
115 |
+
file_paths: list of file paths .
|
116 |
+
mean: list containing mean values for each band in the images in *file_paths*.
|
117 |
+
std: list containing std values for each band in the images in *file_paths*.
|
118 |
+
|
119 |
+
Returns:
|
120 |
+
np.array containing created example
|
121 |
+
list of meta info for each image in *file_paths*
|
122 |
+
"""
|
123 |
+
|
124 |
+
imgs = []
|
125 |
+
metas = []
|
126 |
+
temporal_coords = []
|
127 |
+
location_coords = []
|
128 |
+
|
129 |
+
for file in file_paths:
|
130 |
+
img, meta, coords = read_geotiff(file)
|
131 |
+
|
132 |
+
# Rescaling (don't normalize on nodata)
|
133 |
+
img = np.moveaxis(img, 0, -1) # channels last for rescaling
|
134 |
+
if indices is not None:
|
135 |
+
img = img[..., indices]
|
136 |
+
img = np.where(img == NO_DATA, NO_DATA_FLOAT, (img - mean) / std)
|
137 |
+
|
138 |
+
imgs.append(img)
|
139 |
+
metas.append(meta)
|
140 |
+
location_coords.append(coords)
|
141 |
+
|
142 |
+
try:
|
143 |
+
match = re.search(r'(\d{7}T\d{6})', file)
|
144 |
+
if match:
|
145 |
+
year = int(match.group(1)[:4])
|
146 |
+
julian_day = match.group(1).split('T')[0][4:]
|
147 |
+
if len(julian_day) == 3:
|
148 |
+
julian_day = int(julian_day)
|
149 |
+
else:
|
150 |
+
julian_day = datetime.datetime.strptime(julian_day, '%m%d').timetuple().tm_yday
|
151 |
+
temporal_coords.append([year, julian_day])
|
152 |
+
except Exception as e:
|
153 |
+
print(f'Could not extract timestamp for {file} ({e})')
|
154 |
+
|
155 |
+
imgs = np.stack(imgs, axis=0) # num_frames, H, W, C
|
156 |
+
imgs = np.moveaxis(imgs, -1, 0).astype("float32") # C, num_frames, H, W
|
157 |
+
imgs = np.expand_dims(imgs, axis=0) # add batch di
|
158 |
+
|
159 |
+
return imgs, temporal_coords, location_coords, metas
|
160 |
+
|
161 |
+
|
162 |
+
def run_model(
|
163 |
+
model: torch.nn.Module,
|
164 |
+
input_data: torch.Tensor,
|
165 |
+
temporal_coords: None | torch.Tensor,
|
166 |
+
location_coords: None | torch.Tensor,
|
167 |
+
mask_ratio: float,
|
168 |
+
device: torch.device,
|
169 |
+
):
|
170 |
+
"""Run *model* with *input_data* and create images from output tokens (mask, reconstructed + visible).
|
171 |
+
|
172 |
+
Args:
|
173 |
+
model: MAE model to run.
|
174 |
+
input_data: torch.Tensor with shape (B, C, T, H, W).
|
175 |
+
mask_ratio: mask ratio to use.
|
176 |
+
device: device where model should run.
|
177 |
+
|
178 |
+
Returns:
|
179 |
+
3 torch.Tensor with shape (B, C, T, H, W).
|
180 |
+
"""
|
181 |
+
|
182 |
+
with torch.no_grad():
|
183 |
+
x = input_data.to(device)
|
184 |
+
|
185 |
+
_, pred, mask = model(x, temporal_coords, location_coords, mask_ratio)
|
186 |
+
|
187 |
+
# Create mask and prediction images (un-patchify)
|
188 |
+
mask_img = (
|
189 |
+
model.unpatchify(mask.unsqueeze(-1).repeat(1, 1, pred.shape[-1])).detach().cpu()
|
190 |
+
)
|
191 |
+
pred_img = model.unpatchify(pred).detach().cpu()
|
192 |
+
|
193 |
+
# Mix visible and predicted patches
|
194 |
+
rec_img = input_data.clone()
|
195 |
+
rec_img[mask_img == 1] = pred_img[
|
196 |
+
mask_img == 1
|
197 |
+
] # binary mask: 0 is keep, 1 is remove
|
198 |
+
|
199 |
+
# Switch zeros/ones in mask images so masked patches appear darker in plots (better visualization)
|
200 |
+
mask_img = (~(mask_img.to(torch.bool))).to(torch.float)
|
201 |
+
|
202 |
+
return rec_img, mask_img
|
203 |
+
|
204 |
+
|
205 |
+
def save_rgb_imgs(
|
206 |
+
input_img, rec_img, mask_img, channels, mean, std, output_dir, meta_data
|
207 |
+
):
|
208 |
+
"""Wrapper function to save Geotiff images (original, reconstructed, masked) per timestamp.
|
209 |
+
|
210 |
+
Args:
|
211 |
+
input_img: input torch.Tensor with shape (C, T, H, W).
|
212 |
+
rec_img: reconstructed torch.Tensor with shape (C, T, H, W).
|
213 |
+
mask_img: mask torch.Tensor with shape (C, T, H, W).
|
214 |
+
channels: list of indices representing RGB channels.
|
215 |
+
mean: list of mean values for each band.
|
216 |
+
std: list of std values for each band.
|
217 |
+
output_dir: directory where to save outputs.
|
218 |
+
meta_data: list of dicts with geotiff meta info.
|
219 |
+
"""
|
220 |
+
|
221 |
+
for t in range(input_img.shape[1]):
|
222 |
+
rgb_orig, rgb_pred = process_channel_group(
|
223 |
+
orig_img=input_img[:, t, :, :],
|
224 |
+
new_img=rec_img[:, t, :, :],
|
225 |
+
channels=channels,
|
226 |
+
mean=mean,
|
227 |
+
std=std,
|
228 |
+
)
|
229 |
+
|
230 |
+
rgb_mask = mask_img[channels, t, :, :] * rgb_orig
|
231 |
+
|
232 |
+
# Saving images
|
233 |
+
|
234 |
+
save_geotiff(
|
235 |
+
image=_convert_np_uint8(rgb_orig),
|
236 |
+
output_path=os.path.join(output_dir, f"original_rgb_t{t}.tiff"),
|
237 |
+
meta=meta_data[t],
|
238 |
+
)
|
239 |
+
|
240 |
+
save_geotiff(
|
241 |
+
image=_convert_np_uint8(rgb_pred),
|
242 |
+
output_path=os.path.join(output_dir, f"predicted_rgb_t{t}.tiff"),
|
243 |
+
meta=meta_data[t],
|
244 |
+
)
|
245 |
+
|
246 |
+
save_geotiff(
|
247 |
+
image=_convert_np_uint8(rgb_mask),
|
248 |
+
output_path=os.path.join(output_dir, f"masked_rgb_t{t}.tiff"),
|
249 |
+
meta=meta_data[t],
|
250 |
+
)
|
251 |
+
|
252 |
+
|
253 |
+
def save_imgs(rec_img, mask_img, mean, std, output_dir, meta_data):
|
254 |
+
"""Wrapper function to save Geotiff images (reconstructed, mask) per timestamp.
|
255 |
+
|
256 |
+
Args:
|
257 |
+
rec_img: reconstructed torch.Tensor with shape (C, T, H, W).
|
258 |
+
mask_img: mask torch.Tensor with shape (C, T, H, W).
|
259 |
+
mean: list of mean values for each band.
|
260 |
+
std: list of std values for each band.
|
261 |
+
output_dir: directory where to save outputs.
|
262 |
+
meta_data: list of dicts with geotiff meta info.
|
263 |
+
"""
|
264 |
+
|
265 |
+
mean = torch.tensor(np.asarray(mean)[:, None, None]) # C H W
|
266 |
+
std = torch.tensor(np.asarray(std)[:, None, None])
|
267 |
+
|
268 |
+
for t in range(rec_img.shape[1]):
|
269 |
+
# Back to original data range
|
270 |
+
rec_img_t = ((rec_img[:, t, :, :] * std) + mean).to(torch.int16)
|
271 |
+
|
272 |
+
mask_img_t = mask_img[:, t, :, :].to(torch.int16)
|
273 |
+
|
274 |
+
# Saving images
|
275 |
+
|
276 |
+
save_geotiff(
|
277 |
+
image=rec_img_t,
|
278 |
+
output_path=os.path.join(output_dir, f"predicted_t{t}.tiff"),
|
279 |
+
meta=meta_data[t],
|
280 |
+
)
|
281 |
+
|
282 |
+
save_geotiff(
|
283 |
+
image=mask_img_t,
|
284 |
+
output_path=os.path.join(output_dir, f"mask_t{t}.tiff"),
|
285 |
+
meta=meta_data[t],
|
286 |
+
)
|
287 |
+
|
288 |
+
|
289 |
+
def main(
|
290 |
+
data_files: List[str],
|
291 |
+
config_path: str,
|
292 |
+
checkpoint: str,
|
293 |
+
output_dir: str,
|
294 |
+
rgb_outputs: bool,
|
295 |
+
mask_ratio: float = None,
|
296 |
+
input_indices: list[int] = None,
|
297 |
+
):
|
298 |
+
os.makedirs(output_dir, exist_ok=True)
|
299 |
+
|
300 |
+
# Get parameters --------
|
301 |
+
|
302 |
+
with open(config_path, "r") as f:
|
303 |
+
config = yaml.safe_load(f)
|
304 |
+
|
305 |
+
batch_size = 1
|
306 |
+
bands = config['DATA']['BANDS']
|
307 |
+
num_frames = len(data_files)
|
308 |
+
mean = config['DATA']['MEAN']
|
309 |
+
std = config['DATA']['STD']
|
310 |
+
coords_encoding = config['MODEL']['COORDS_ENCODING']
|
311 |
+
img_size = config['DATA']['INPUT_SIZE'][-1]
|
312 |
+
|
313 |
+
mask_ratio = mask_ratio or config['DATA']['MASK_RATIO']
|
314 |
+
|
315 |
+
print(
|
316 |
+
f"\nTreating {len(data_files)} files as {len(data_files)} time steps from the same location\n"
|
317 |
+
)
|
318 |
+
if len(data_files) != 3:
|
319 |
+
print(
|
320 |
+
"The original model was trained for 3 time steps (expecting 3 files). \nResults with different numbers of timesteps may vary"
|
321 |
+
)
|
322 |
+
|
323 |
+
if torch.cuda.is_available():
|
324 |
+
device = torch.device("cuda")
|
325 |
+
else:
|
326 |
+
device = torch.device("cpu")
|
327 |
+
|
328 |
+
print(f"Using {device} device.\n")
|
329 |
+
|
330 |
+
# Loading data ---------------------------------------------------------------------------------
|
331 |
+
|
332 |
+
input_data, temporal_coords, location_coords, meta_data = load_example(
|
333 |
+
file_paths=data_files, indices=input_indices, mean=mean, std=std
|
334 |
+
)
|
335 |
+
|
336 |
+
if not temporal_coords and 'time' in coords_encoding:
|
337 |
+
coords_encoding.pop('time')
|
338 |
+
if location_coords is None and 'location' in coords_encoding:
|
339 |
+
coords_encoding.pop('location')
|
340 |
+
|
341 |
+
# Create model and load checkpoint -------------------------------------------------------------
|
342 |
+
|
343 |
+
model = PrithviMAE(img_size=config['DATA']['INPUT_SIZE'][-2:],
|
344 |
+
patch_size=config['MODEL']['PATCH_SIZE'],
|
345 |
+
num_frames=num_frames,
|
346 |
+
in_chans=len(bands),
|
347 |
+
embed_dim=config['MODEL']['EMBED_DIM'],
|
348 |
+
depth=config['MODEL']['DEPTH'],
|
349 |
+
num_heads=config['MODEL']['NUM_HEADS'],
|
350 |
+
decoder_embed_dim=config['MODEL']['DECODER_EMBED_DIM'],
|
351 |
+
decoder_depth=config['MODEL']['DECODER_DEPTH'],
|
352 |
+
decoder_num_heads=config['MODEL']['DECODER_NUM_HEADS'],
|
353 |
+
mlp_ratio=config['MODEL']['MLP_RATIO'],
|
354 |
+
norm_layer=partial(torch.nn.LayerNorm, eps=1e-6),
|
355 |
+
norm_pix_loss=config['MODEL']['NORM_PIX_LOSS'],
|
356 |
+
coords_encoding=coords_encoding,
|
357 |
+
coords_scale_learn=config['MODEL']['COORDS_SCALE_LEARN'])
|
358 |
+
|
359 |
+
total_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
|
360 |
+
print(f"\n--> Model has {total_params:,} parameters.\n")
|
361 |
+
|
362 |
+
model.to(device)
|
363 |
+
|
364 |
+
state_dict = torch.load(checkpoint, map_location=device)
|
365 |
+
# discard fixed pos_embedding weight
|
366 |
+
for k in list(state_dict.keys()):
|
367 |
+
if 'pos_embed' in k:
|
368 |
+
del state_dict[k]
|
369 |
+
model.load_state_dict(state_dict, strict=False)
|
370 |
+
print(f"Loaded checkpoint from {checkpoint}")
|
371 |
+
|
372 |
+
# Running model --------------------------------------------------------------------------------
|
373 |
+
|
374 |
+
model.eval()
|
375 |
+
channels = [bands.index(b) for b in ["B04", "B03", "B02"]] # BGR -> RGB
|
376 |
+
|
377 |
+
# Reflect pad if not divisible by img_size
|
378 |
+
original_h, original_w = input_data.shape[-2:]
|
379 |
+
pad_h = img_size - (original_h % img_size)
|
380 |
+
pad_w = img_size - (original_w % img_size)
|
381 |
+
input_data = np.pad(
|
382 |
+
input_data, ((0, 0), (0, 0), (0, 0), (0, pad_h), (0, pad_w)), mode="reflect"
|
383 |
+
)
|
384 |
+
|
385 |
+
# Build sliding window
|
386 |
+
batch = torch.tensor(input_data, device="cpu")
|
387 |
+
windows = batch.unfold(3, img_size, img_size).unfold(4, img_size, img_size)
|
388 |
+
h1, w1 = windows.shape[3:5]
|
389 |
+
windows = rearrange(
|
390 |
+
windows, "b c t h1 w1 h w -> (b h1 w1) c t h w", h=img_size, w=img_size
|
391 |
+
)
|
392 |
+
|
393 |
+
# Split into batches if number of windows > batch_size
|
394 |
+
num_batches = windows.shape[0] // batch_size if windows.shape[0] > batch_size else 1
|
395 |
+
windows = torch.tensor_split(windows, num_batches, dim=0)
|
396 |
+
|
397 |
+
temporal_coords = torch.Tensor(temporal_coords, device=device).unsqueeze(0)
|
398 |
+
location_coords = torch.Tensor(location_coords[0], device=device).unsqueeze(0)
|
399 |
+
|
400 |
+
# Run model
|
401 |
+
rec_imgs = []
|
402 |
+
mask_imgs = []
|
403 |
+
for x in windows:
|
404 |
+
rec_img, mask_img = run_model(model, x, temporal_coords, location_coords, mask_ratio, device)
|
405 |
+
rec_imgs.append(rec_img)
|
406 |
+
mask_imgs.append(mask_img)
|
407 |
+
|
408 |
+
rec_imgs = torch.concat(rec_imgs, dim=0)
|
409 |
+
mask_imgs = torch.concat(mask_imgs, dim=0)
|
410 |
+
|
411 |
+
# Build images from patches
|
412 |
+
rec_imgs = rearrange(
|
413 |
+
rec_imgs,
|
414 |
+
"(b h1 w1) c t h w -> b c t (h1 h) (w1 w)",
|
415 |
+
h=img_size,
|
416 |
+
w=img_size,
|
417 |
+
b=1,
|
418 |
+
c=len(bands),
|
419 |
+
t=num_frames,
|
420 |
+
h1=h1,
|
421 |
+
w1=w1,
|
422 |
+
)
|
423 |
+
mask_imgs = rearrange(
|
424 |
+
mask_imgs,
|
425 |
+
"(b h1 w1) c t h w -> b c t (h1 h) (w1 w)",
|
426 |
+
h=img_size,
|
427 |
+
w=img_size,
|
428 |
+
b=1,
|
429 |
+
c=len(bands),
|
430 |
+
t=num_frames,
|
431 |
+
h1=h1,
|
432 |
+
w1=w1,
|
433 |
+
)
|
434 |
+
|
435 |
+
# Cut padded images back to original size
|
436 |
+
rec_imgs_full = rec_imgs[..., :original_h, :original_w]
|
437 |
+
mask_imgs_full = mask_imgs[..., :original_h, :original_w]
|
438 |
+
batch_full = batch[..., :original_h, :original_w]
|
439 |
+
|
440 |
+
# Build output images
|
441 |
+
if rgb_outputs:
|
442 |
+
for d in meta_data:
|
443 |
+
d.update(count=3, dtype="uint8", compress="lzw", nodata=0)
|
444 |
+
|
445 |
+
save_rgb_imgs(
|
446 |
+
batch_full[0, ...],
|
447 |
+
rec_imgs_full[0, ...],
|
448 |
+
mask_imgs_full[0, ...],
|
449 |
+
channels,
|
450 |
+
mean,
|
451 |
+
std,
|
452 |
+
output_dir,
|
453 |
+
meta_data,
|
454 |
+
)
|
455 |
+
else:
|
456 |
+
for d in meta_data:
|
457 |
+
d.update(compress="lzw", nodata=0)
|
458 |
+
|
459 |
+
save_imgs(
|
460 |
+
rec_imgs_full[0, ...],
|
461 |
+
mask_imgs_full[0, ...],
|
462 |
+
mean,
|
463 |
+
std,
|
464 |
+
output_dir,
|
465 |
+
meta_data,
|
466 |
+
)
|
467 |
+
|
468 |
+
print("Done!")
|
469 |
+
|
470 |
+
|
471 |
+
if __name__ == "__main__":
|
472 |
+
parser = argparse.ArgumentParser("MAE run inference", add_help=False)
|
473 |
+
|
474 |
+
parser.add_argument(
|
475 |
+
"--data_files",
|
476 |
+
type=str,
|
477 |
+
nargs="+",
|
478 |
+
default=["examples/HLS.L30.T13REN.2018013T172747.v2.0.B02.B03.B04.B05.B06.B07_cropped.tif",
|
479 |
+
"examples/HLS.L30.T13REN.2018029T172738.v2.0.B02.B03.B04.B05.B06.B07_cropped.tif",
|
480 |
+
"examples/HLS.L30.T13REN.2018061T172724.v2.0.B02.B03.B04.B05.B06.B07_cropped.tif"
|
481 |
+
],
|
482 |
+
help="Path to the data files. Assumes multi-band files.",
|
483 |
+
)
|
484 |
+
parser.add_argument(
|
485 |
+
"--config_path",
|
486 |
+
"-c",
|
487 |
+
type=str,
|
488 |
+
default="Prithvi_EO_V2_300_TL_config.yaml",
|
489 |
+
help="Path to yaml file containing model training parameters.",
|
490 |
+
)
|
491 |
+
parser.add_argument(
|
492 |
+
"--checkpoint",
|
493 |
+
type=str,
|
494 |
+
default="Prithvi_EO_V2_300_TL.pt",
|
495 |
+
help="Path to a checkpoint file to load from.",
|
496 |
+
)
|
497 |
+
parser.add_argument(
|
498 |
+
"--output_dir",
|
499 |
+
type=str,
|
500 |
+
default="output",
|
501 |
+
help="Path to the directory where to save outputs.",
|
502 |
+
)
|
503 |
+
parser.add_argument(
|
504 |
+
"--mask_ratio",
|
505 |
+
default=0.75,
|
506 |
+
type=float,
|
507 |
+
help="Masking ratio (percentage of removed patches). "
|
508 |
+
"If None (default) use same value used for pretraining.",
|
509 |
+
)
|
510 |
+
parser.add_argument(
|
511 |
+
"--input_indices",
|
512 |
+
default=None,
|
513 |
+
type=int,
|
514 |
+
nargs="+",
|
515 |
+
help="0-based indices of channels to be selected from the input. By default takes all.",
|
516 |
+
)
|
517 |
+
parser.add_argument(
|
518 |
+
"--rgb_outputs",
|
519 |
+
action="store_true",
|
520 |
+
help="If present, output files will only contain RGB channels. "
|
521 |
+
"Otherwise, all bands will be saved.",
|
522 |
+
)
|
523 |
+
args = parser.parse_args()
|
524 |
+
|
525 |
+
main(**vars(args))
|
prithvi_mae.py
ADDED
@@ -0,0 +1,736 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) IBM Corp. 2024. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
# --------------------------------------------------------
|
15 |
+
# References:
|
16 |
+
# timm: https://github.com/rwightman/pytorch-image-models/tree/master/timm
|
17 |
+
# transformers: https://github.com/huggingface/transformers
|
18 |
+
# --------------------------------------------------------
|
19 |
+
|
20 |
+
from functools import partial
|
21 |
+
from typing import List, Tuple
|
22 |
+
|
23 |
+
import logging
|
24 |
+
import numpy as np
|
25 |
+
import torch
|
26 |
+
import torch.nn as nn
|
27 |
+
from einops import rearrange
|
28 |
+
from timm.layers import to_2tuple
|
29 |
+
from timm.models.vision_transformer import Block
|
30 |
+
|
31 |
+
|
32 |
+
def get_3d_sincos_pos_embed(embed_dim, grid_size, add_cls_token=False):
|
33 |
+
"""
|
34 |
+
Create 3D sin/cos positional embeddings.
|
35 |
+
|
36 |
+
Args:
|
37 |
+
embed_dim (int):
|
38 |
+
Embedding dimension.
|
39 |
+
grid_size (tuple[int, int, int] | list[int]):
|
40 |
+
The grid depth, height and width.
|
41 |
+
add_cls_token (bool, *optional*, defaults to False):
|
42 |
+
Whether or not to add a classification (CLS) token.
|
43 |
+
|
44 |
+
Returns:
|
45 |
+
(`torch.FloatTensor` of shape (grid_size[0]*grid_size[1]*grid_size[2], embed_dim) or
|
46 |
+
(1+grid_size[0]*grid_size[1]*grid_size[2], embed_dim): the position embeddings (with or without cls token)
|
47 |
+
"""
|
48 |
+
|
49 |
+
assert embed_dim % 16 == 0
|
50 |
+
|
51 |
+
t_size, h_size, w_size = grid_size
|
52 |
+
|
53 |
+
w_embed_dim = embed_dim // 16 * 6
|
54 |
+
h_embed_dim = embed_dim // 16 * 6
|
55 |
+
t_embed_dim = embed_dim // 16 * 4
|
56 |
+
|
57 |
+
w_pos_embed = get_1d_sincos_pos_embed_from_grid(w_embed_dim, np.arange(w_size))
|
58 |
+
h_pos_embed = get_1d_sincos_pos_embed_from_grid(h_embed_dim, np.arange(h_size))
|
59 |
+
t_pos_embed = get_1d_sincos_pos_embed_from_grid(t_embed_dim, np.arange(t_size))
|
60 |
+
|
61 |
+
w_pos_embed = np.tile(w_pos_embed, (t_size * h_size, 1))
|
62 |
+
h_pos_embed = np.tile(np.repeat(h_pos_embed, w_size, axis=0), (t_size, 1))
|
63 |
+
t_pos_embed = np.repeat(t_pos_embed, h_size * w_size, axis=0)
|
64 |
+
|
65 |
+
pos_embed = np.concatenate((w_pos_embed, h_pos_embed, t_pos_embed), axis=1)
|
66 |
+
|
67 |
+
if add_cls_token:
|
68 |
+
pos_embed = np.concatenate([np.zeros([1, embed_dim]), pos_embed], axis=0)
|
69 |
+
return pos_embed
|
70 |
+
|
71 |
+
|
72 |
+
def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
|
73 |
+
"""
|
74 |
+
embed_dim: output dimension for each position pos: a list of positions to be encoded: size (M,) out: (M, D)
|
75 |
+
"""
|
76 |
+
if embed_dim % 2 != 0:
|
77 |
+
raise ValueError("embed_dim must be even")
|
78 |
+
|
79 |
+
omega = np.arange(embed_dim // 2, dtype=float)
|
80 |
+
omega /= embed_dim / 2.0
|
81 |
+
omega = 1.0 / 10000**omega # (D/2,)
|
82 |
+
|
83 |
+
pos = pos.reshape(-1) # (M,)
|
84 |
+
out = np.einsum("m,d->md", pos, omega) # (M, D/2), outer product
|
85 |
+
|
86 |
+
emb_sin = np.sin(out) # (M, D/2)
|
87 |
+
emb_cos = np.cos(out) # (M, D/2)
|
88 |
+
|
89 |
+
emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D)
|
90 |
+
return emb
|
91 |
+
|
92 |
+
|
93 |
+
def _get_1d_sincos_embed_from_grid_torch(embed_dim: int, pos: torch.Tensor):
|
94 |
+
""" This is the torch version of *get_1d_sincos_pos_embed_from_grid()*. However,
|
95 |
+
it was modified to cast omega values to pos.dtype which must be float (and not int as in
|
96 |
+
regular positional embeddings). This was required in order to allow for native FSDP mixed
|
97 |
+
precision support: modify omega to appropriate dtype (pos carries the correct float dtype),
|
98 |
+
instead of manually forcing float32.
|
99 |
+
|
100 |
+
embed_dim: output dimension for each position
|
101 |
+
pos: a list of positions to be encoded: size (M,) - must be float dtype!
|
102 |
+
out: (M, D)
|
103 |
+
"""
|
104 |
+
assert embed_dim % 2 == 0
|
105 |
+
assert pos.dtype in [torch.float32, torch.float16, torch.bfloat16]
|
106 |
+
|
107 |
+
omega = torch.arange(embed_dim // 2, dtype=pos.dtype).to(pos.device)
|
108 |
+
omega /= embed_dim / 2.0
|
109 |
+
omega = 1.0 / 10000**omega # (D/2,)
|
110 |
+
|
111 |
+
pos = pos.reshape(-1) # (M,)
|
112 |
+
out = torch.einsum("m,d->md", pos, omega) # (M, D/2), outer product
|
113 |
+
|
114 |
+
emb_sin = torch.sin(out) # (M, D/2)
|
115 |
+
emb_cos = torch.cos(out) # (M, D/2)
|
116 |
+
|
117 |
+
emb = torch.cat([emb_sin, emb_cos], dim=1) # (M, D)
|
118 |
+
|
119 |
+
return emb
|
120 |
+
|
121 |
+
|
122 |
+
def _init_weights(module):
|
123 |
+
"""Initialize the weights"""
|
124 |
+
if isinstance(module, nn.Linear):
|
125 |
+
nn.init.xavier_uniform_(module.weight)
|
126 |
+
if module.bias is not None:
|
127 |
+
module.bias.data.zero_()
|
128 |
+
elif isinstance(module, nn.LayerNorm):
|
129 |
+
module.bias.data.zero_()
|
130 |
+
module.weight.data.fill_(1.0)
|
131 |
+
|
132 |
+
|
133 |
+
class PatchEmbed(nn.Module):
|
134 |
+
"""3D version of timm.models.vision_transformer.PatchEmbed"""
|
135 |
+
def __init__(
|
136 |
+
self,
|
137 |
+
input_size: Tuple[int, int, int] = (1, 224, 224),
|
138 |
+
patch_size: Tuple[int, int, int] = (1, 16, 16),
|
139 |
+
in_chans: int = 3,
|
140 |
+
embed_dim: int = 768,
|
141 |
+
norm_layer: nn.Module | None = None,
|
142 |
+
flatten: bool = True,
|
143 |
+
bias: bool = True,
|
144 |
+
):
|
145 |
+
super().__init__()
|
146 |
+
self.input_size = input_size
|
147 |
+
self.patch_size = patch_size
|
148 |
+
self.grid_size = [s // p for s, p in zip(self.input_size, self.patch_size)]
|
149 |
+
self.num_patches = self.grid_size[0] * self.grid_size[1] * self.grid_size[2]
|
150 |
+
self.flatten = flatten
|
151 |
+
|
152 |
+
self.proj = nn.Conv3d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size, bias=bias)
|
153 |
+
self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()
|
154 |
+
|
155 |
+
def forward(self, x):
|
156 |
+
B, C, T, H, W = x.shape
|
157 |
+
|
158 |
+
if T / self.patch_size[0] % 1 or H / self.patch_size[1] % 1 or W / self.patch_size[2] % 1:
|
159 |
+
logging.warning(f"Input {x.shape[-3:]} is not divisible by patch size {self.patch_size}."
|
160 |
+
f"The border will be ignored, add backbone_padding for pixel-wise tasks.")
|
161 |
+
|
162 |
+
x = self.proj(x)
|
163 |
+
if self.flatten:
|
164 |
+
x = x.flatten(2).transpose(1, 2) # B,C,T,H,W -> B,C,L -> B,L,C
|
165 |
+
x = self.norm(x)
|
166 |
+
return x
|
167 |
+
|
168 |
+
|
169 |
+
class TemporalEncoder(nn.Module):
|
170 |
+
def __init__(self, embed_dim: int, trainable_scale: bool = False):
|
171 |
+
super().__init__()
|
172 |
+
self.embed_dim = embed_dim
|
173 |
+
self.year_embed_dim = embed_dim // 2
|
174 |
+
self.julian_day_embed_dim = embed_dim - self.year_embed_dim
|
175 |
+
|
176 |
+
# If trainable, initialize scale with small number
|
177 |
+
if trainable_scale:
|
178 |
+
self.scale = nn.Parameter(torch.full((1,), 0.1))
|
179 |
+
else:
|
180 |
+
self.register_buffer('scale', torch.ones(1))
|
181 |
+
|
182 |
+
def forward(self, temporal_coords: torch.Tensor, tokens_per_frame: int | None = None):
|
183 |
+
"""
|
184 |
+
temporal_coords: year and day-of-year info with shape (B, T, 2).
|
185 |
+
tokens_per_frame: number of tokens for each frame in the sample. If provided, embeddings will be
|
186 |
+
repeated over T dimension, and final shape is (B, T*tokens_per_frame, embed_dim).
|
187 |
+
"""
|
188 |
+
shape = temporal_coords.shape[:2] + (-1,) # B, T, -1
|
189 |
+
|
190 |
+
year = _get_1d_sincos_embed_from_grid_torch(
|
191 |
+
self.year_embed_dim, temporal_coords[:, :, 0].flatten()).reshape(shape)
|
192 |
+
julian_day = _get_1d_sincos_embed_from_grid_torch(
|
193 |
+
self.julian_day_embed_dim, temporal_coords[:, :, 1].flatten()).reshape(shape)
|
194 |
+
|
195 |
+
embedding = self.scale * torch.cat([year, julian_day], dim=-1)
|
196 |
+
|
197 |
+
if tokens_per_frame is not None:
|
198 |
+
embedding = torch.repeat_interleave(embedding, tokens_per_frame, dim=1)
|
199 |
+
|
200 |
+
return embedding # B, T*tokens_per_frame, embed_dim
|
201 |
+
|
202 |
+
|
203 |
+
class LocationEncoder(nn.Module):
|
204 |
+
def __init__(self, embed_dim: int, trainable_scale: bool = False):
|
205 |
+
super().__init__()
|
206 |
+
self.embed_dim = embed_dim
|
207 |
+
self.lat_embed_dim = embed_dim // 2
|
208 |
+
self.lon_embed_dim = embed_dim - self.lat_embed_dim
|
209 |
+
|
210 |
+
# If trainable, initialize scale with small number
|
211 |
+
if trainable_scale:
|
212 |
+
self.scale = nn.Parameter(torch.full((1,), 0.1))
|
213 |
+
else:
|
214 |
+
self.register_buffer('scale', torch.ones(1))
|
215 |
+
|
216 |
+
def forward(self, location_coords: torch.Tensor):
|
217 |
+
"""
|
218 |
+
location_coords: lat and lon info with shape (B, 2).
|
219 |
+
"""
|
220 |
+
shape = location_coords.shape[:1] + (1, -1) # B, 1, -1
|
221 |
+
|
222 |
+
lat = _get_1d_sincos_embed_from_grid_torch(
|
223 |
+
self.lat_embed_dim, location_coords[:, 0].flatten()).reshape(shape)
|
224 |
+
lon = _get_1d_sincos_embed_from_grid_torch(
|
225 |
+
self.lon_embed_dim, location_coords[:, 1].flatten()).reshape(shape)
|
226 |
+
|
227 |
+
embedding = self.scale * torch.cat([lat, lon], dim=-1)
|
228 |
+
|
229 |
+
return embedding # B, 1, embed_dim
|
230 |
+
|
231 |
+
|
232 |
+
class PrithviViT(nn.Module):
|
233 |
+
""" Prithvi ViT Encoder"""
|
234 |
+
def __init__(self,
|
235 |
+
img_size: int | Tuple[int, int] = 224,
|
236 |
+
patch_size: int | Tuple[int, int, int] = (1, 16, 16),
|
237 |
+
num_frames: int = 1,
|
238 |
+
in_chans: int = 3,
|
239 |
+
embed_dim: int = 1024,
|
240 |
+
depth: int = 24,
|
241 |
+
num_heads: int = 16,
|
242 |
+
mlp_ratio: float = 4.,
|
243 |
+
norm_layer: nn.Module = nn.LayerNorm,
|
244 |
+
coords_encoding: List[str] | None = None,
|
245 |
+
coords_scale_learn: bool = False,
|
246 |
+
encoder_only: bool = True, # needed for timm
|
247 |
+
** kwargs,
|
248 |
+
):
|
249 |
+
super().__init__()
|
250 |
+
|
251 |
+
self.feature_info = []
|
252 |
+
self.encoder_only = encoder_only
|
253 |
+
self.in_chans = in_chans
|
254 |
+
self.num_frames = num_frames
|
255 |
+
self.embed_dim = embed_dim
|
256 |
+
self.img_size = to_2tuple(img_size)
|
257 |
+
if isinstance(patch_size, int):
|
258 |
+
patch_size = (1, patch_size, patch_size)
|
259 |
+
|
260 |
+
# 3D patch embedding
|
261 |
+
self.patch_embed = PatchEmbed(
|
262 |
+
input_size=(num_frames,) + self.img_size,
|
263 |
+
patch_size=patch_size,
|
264 |
+
in_chans=in_chans,
|
265 |
+
embed_dim=embed_dim,
|
266 |
+
)
|
267 |
+
|
268 |
+
# Optional temporal and location embedding
|
269 |
+
coords_encoding = coords_encoding or []
|
270 |
+
self.temporal_encoding = 'time' in coords_encoding
|
271 |
+
self.location_encoding = 'location' in coords_encoding
|
272 |
+
if self.temporal_encoding:
|
273 |
+
assert patch_size[0] == 1, f"With temporal encoding, patch_size[0] must be 1, received {patch_size[0]}"
|
274 |
+
self.temporal_embed_enc = TemporalEncoder(embed_dim, coords_scale_learn)
|
275 |
+
if self.location_encoding:
|
276 |
+
self.location_embed_enc = LocationEncoder(embed_dim, coords_scale_learn)
|
277 |
+
|
278 |
+
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
|
279 |
+
self.register_buffer("pos_embed", torch.zeros(1, self.patch_embed.num_patches + 1, embed_dim))
|
280 |
+
|
281 |
+
# Transformer layers
|
282 |
+
self.blocks = []
|
283 |
+
for i in range(depth):
|
284 |
+
self.blocks.append(Block(embed_dim, num_heads, mlp_ratio, qkv_bias=True, norm_layer=norm_layer))
|
285 |
+
self.feature_info.append(
|
286 |
+
{"num_chs": embed_dim * self.patch_embed.patch_size[0], "reduction": 1, "module": f"blocks.{i}"}
|
287 |
+
)
|
288 |
+
self.blocks = nn.ModuleList(self.blocks)
|
289 |
+
|
290 |
+
self.norm = norm_layer(embed_dim)
|
291 |
+
|
292 |
+
self.initialize_weights()
|
293 |
+
|
294 |
+
def initialize_weights(self):
|
295 |
+
# initialize (and freeze) position embeddings by sin-cos embedding
|
296 |
+
pos_embed = get_3d_sincos_pos_embed(
|
297 |
+
self.pos_embed.shape[-1], self.patch_embed.grid_size, add_cls_token=True
|
298 |
+
)
|
299 |
+
self.pos_embed.data.copy_(torch.from_numpy(pos_embed).float().unsqueeze(0))
|
300 |
+
|
301 |
+
# initialize patch_embeddings like nn.Linear (instead of nn.Conv2d)
|
302 |
+
w = self.patch_embed.proj.weight.data
|
303 |
+
torch.nn.init.xavier_uniform_(w.view([w.shape[0], -1]))
|
304 |
+
|
305 |
+
# timm's trunc_normal_(std=.02) is effectively normal_(std=0.02) as cutoff is too big (2.)
|
306 |
+
torch.nn.init.normal_(self.cls_token, std=0.02)
|
307 |
+
self.apply(_init_weights)
|
308 |
+
|
309 |
+
def random_masking(self, sequence, mask_ratio, noise=None):
|
310 |
+
"""
|
311 |
+
Perform per-sample random masking by per-sample shuffling. Per-sample shuffling is done by argsort random
|
312 |
+
noise.
|
313 |
+
|
314 |
+
Args:
|
315 |
+
sequence (`torch.FloatTensor` of shape `(batch_size, sequence_length, dim)`)
|
316 |
+
mask_ratio (float): mask ratio to use.
|
317 |
+
noise (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*) which is
|
318 |
+
mainly used for testing purposes to control randomness and maintain the reproducibility
|
319 |
+
"""
|
320 |
+
batch_size, seq_length, dim = sequence.shape
|
321 |
+
len_keep = int(seq_length * (1 - mask_ratio))
|
322 |
+
|
323 |
+
if noise is None:
|
324 |
+
noise = torch.rand(batch_size, seq_length, device=sequence.device) # noise in [0, 1]
|
325 |
+
|
326 |
+
# sort noise for each sample
|
327 |
+
ids_shuffle = torch.argsort(noise, dim=1).to(sequence.device) # ascend: small is keep, large is remove
|
328 |
+
ids_restore = torch.argsort(ids_shuffle, dim=1).to(sequence.device)
|
329 |
+
|
330 |
+
# keep the first subset
|
331 |
+
ids_keep = ids_shuffle[:, :len_keep]
|
332 |
+
sequence_unmasked = torch.gather(sequence, dim=1, index=ids_keep.unsqueeze(-1).repeat(1, 1, dim))
|
333 |
+
|
334 |
+
# generate the binary mask: 0 is keep, 1 is remove
|
335 |
+
mask = torch.ones([batch_size, seq_length], device=sequence.device)
|
336 |
+
mask[:, :len_keep] = 0
|
337 |
+
# unshuffle to get the binary mask
|
338 |
+
mask = torch.gather(mask, dim=1, index=ids_restore)
|
339 |
+
|
340 |
+
return sequence_unmasked, mask, ids_restore
|
341 |
+
|
342 |
+
def _get_pos_embed(self, x):
|
343 |
+
t, h, w = x.shape[-3:]
|
344 |
+
|
345 |
+
pos_embed = torch.from_numpy(get_3d_sincos_pos_embed(
|
346 |
+
self.embed_dim,
|
347 |
+
(
|
348 |
+
t // self.patch_embed.patch_size[0],
|
349 |
+
h // self.patch_embed.patch_size[1],
|
350 |
+
w // self.patch_embed.patch_size[2],
|
351 |
+
),
|
352 |
+
add_cls_token=True,
|
353 |
+
)).float().unsqueeze(0).to(x)
|
354 |
+
|
355 |
+
return pos_embed
|
356 |
+
|
357 |
+
|
358 |
+
def forward(
|
359 |
+
self, x: torch.Tensor,
|
360 |
+
temporal_coords: None | torch.Tensor = None,
|
361 |
+
location_coords: None | torch.Tensor = None,
|
362 |
+
mask_ratio=0.75
|
363 |
+
):
|
364 |
+
if x.shape[-3:] != self.patch_embed.input_size:
|
365 |
+
# changed input size
|
366 |
+
pos_embed = self._get_pos_embed(x)
|
367 |
+
else:
|
368 |
+
pos_embed = self.pos_embed
|
369 |
+
|
370 |
+
# embed patches
|
371 |
+
x = self.patch_embed(x)
|
372 |
+
|
373 |
+
# add pos embed w/o cls token
|
374 |
+
x = x + pos_embed[:, 1:, :]
|
375 |
+
|
376 |
+
if self.temporal_encoding:
|
377 |
+
num_tokens_per_frame = x.shape[1] // self.num_frames
|
378 |
+
temporal_encoding = self.temporal_embed_enc(temporal_coords, num_tokens_per_frame)
|
379 |
+
x = x + temporal_encoding
|
380 |
+
if self.location_encoding:
|
381 |
+
location_encoding = self.location_embed_enc(location_coords)
|
382 |
+
x = x + location_encoding
|
383 |
+
|
384 |
+
# masking: length -> length * mask_ratio
|
385 |
+
x, mask, ids_restore = self.random_masking(x, mask_ratio)
|
386 |
+
|
387 |
+
# append cls token
|
388 |
+
cls_token = self.cls_token + pos_embed[:, :1, :]
|
389 |
+
cls_tokens = cls_token.expand(x.shape[0], -1, -1)
|
390 |
+
x = torch.cat((cls_tokens, x), dim=1)
|
391 |
+
|
392 |
+
# apply Transformer blocks
|
393 |
+
for block in self.blocks:
|
394 |
+
x = block(x)
|
395 |
+
x = self.norm(x)
|
396 |
+
|
397 |
+
return x, mask, ids_restore
|
398 |
+
|
399 |
+
def forward_features(
|
400 |
+
self,
|
401 |
+
x: torch.Tensor,
|
402 |
+
temporal_coords: None | torch.Tensor = None,
|
403 |
+
location_coords: None | torch.Tensor = None,
|
404 |
+
) -> list[torch.Tensor]:
|
405 |
+
if len(x.shape) == 4 and self.patch_embed.input_size[0] == 1:
|
406 |
+
# add time dim
|
407 |
+
x = x.unsqueeze(2)
|
408 |
+
|
409 |
+
if x.shape[-3:] != self.patch_embed.input_size:
|
410 |
+
pos_embed = self._get_pos_embed(x)
|
411 |
+
else:
|
412 |
+
pos_embed = self.pos_embed
|
413 |
+
|
414 |
+
# embed patches
|
415 |
+
x = self.patch_embed(x)
|
416 |
+
|
417 |
+
# add pos embed w/o cls token
|
418 |
+
x = x + pos_embed[:, 1:, :]
|
419 |
+
|
420 |
+
if self.temporal_encoding:
|
421 |
+
num_tokens_per_frame = x.shape[1] // self.patch_embed.num_frames
|
422 |
+
temporal_encoding = self.temporal_embed_enc(temporal_coords, num_tokens_per_frame)
|
423 |
+
x = x + temporal_encoding
|
424 |
+
if self.location_encoding:
|
425 |
+
location_encoding = self.location_embed_enc(location_coords)
|
426 |
+
x = x + location_encoding
|
427 |
+
|
428 |
+
# append cls token
|
429 |
+
cls_token = self.cls_token + pos_embed[:, :1, :]
|
430 |
+
cls_tokens = cls_token.expand(x.shape[0], -1, -1)
|
431 |
+
x = torch.cat((cls_tokens, x), dim=1)
|
432 |
+
|
433 |
+
# apply Transformer blocks
|
434 |
+
out = []
|
435 |
+
for block in self.blocks:
|
436 |
+
x = block(x)
|
437 |
+
out.append(x.clone())
|
438 |
+
|
439 |
+
x = self.norm(x)
|
440 |
+
out[-1] = x
|
441 |
+
return out
|
442 |
+
|
443 |
+
def prepare_features_for_image_model(self, features: list[torch.Tensor]) -> list[torch.Tensor]:
|
444 |
+
out = []
|
445 |
+
effective_time_dim = self.patch_embed.input_size[0] // self.patch_embed.patch_size[0]
|
446 |
+
for x in features:
|
447 |
+
x_no_token = x[:, 1:, :]
|
448 |
+
number_of_tokens = x_no_token.shape[1]
|
449 |
+
tokens_per_timestep = number_of_tokens // effective_time_dim
|
450 |
+
h = int(np.sqrt(tokens_per_timestep))
|
451 |
+
encoded = rearrange(
|
452 |
+
x_no_token,
|
453 |
+
"batch (t h w) e -> batch (t e) h w",
|
454 |
+
e=self.embed_dim,
|
455 |
+
t=effective_time_dim,
|
456 |
+
h=h,
|
457 |
+
)
|
458 |
+
out.append(encoded)
|
459 |
+
return out
|
460 |
+
|
461 |
+
|
462 |
+
class MAEDecoder(nn.Module):
|
463 |
+
""" Transformer Decoder used in the Prithvi MAE"""
|
464 |
+
def __init__(self,
|
465 |
+
patch_size: int | Tuple[int, int, int] = (1, 16, 16),
|
466 |
+
grid_size: List[int] | Tuple[int, int, int] = (3, 14, 14),
|
467 |
+
in_chans: int = 3,
|
468 |
+
encoder_embed_dim: int = 1024,
|
469 |
+
decoder_embed_dim: int = 512,
|
470 |
+
depth: int = 8,
|
471 |
+
num_heads: int = 16,
|
472 |
+
mlp_ratio: float = 4.,
|
473 |
+
norm_layer: nn.Module = nn.LayerNorm,
|
474 |
+
coords_encoding: List[str] | None = None,
|
475 |
+
coords_scale_learn: bool = False,
|
476 |
+
):
|
477 |
+
super().__init__()
|
478 |
+
|
479 |
+
self.decoder_embed = nn.Linear(encoder_embed_dim, decoder_embed_dim, bias=True)
|
480 |
+
self.decoder_embed_dim = decoder_embed_dim
|
481 |
+
self.grid_size = grid_size
|
482 |
+
if isinstance(patch_size, int):
|
483 |
+
patch_size = (1, patch_size, patch_size)
|
484 |
+
self.patch_size = patch_size
|
485 |
+
self.num_frames = self.grid_size[0] * patch_size[0]
|
486 |
+
num_patches = self.grid_size[0] * self.grid_size[1] * self.grid_size[2]
|
487 |
+
|
488 |
+
# Optional temporal and location embedding
|
489 |
+
coords_encoding = coords_encoding or []
|
490 |
+
self.temporal_encoding = 'time' in coords_encoding
|
491 |
+
self.location_encoding = 'location' in coords_encoding
|
492 |
+
if self.temporal_encoding:
|
493 |
+
self.temporal_embed_dec = TemporalEncoder(decoder_embed_dim, coords_scale_learn)
|
494 |
+
if self.location_encoding:
|
495 |
+
self.location_embed_dec = LocationEncoder(decoder_embed_dim, coords_scale_learn)
|
496 |
+
|
497 |
+
self.mask_token = nn.Parameter(torch.zeros(1, 1, decoder_embed_dim))
|
498 |
+
|
499 |
+
self.register_buffer("decoder_pos_embed", torch.zeros(1, num_patches + 1, decoder_embed_dim))
|
500 |
+
|
501 |
+
self.decoder_blocks = nn.ModuleList(
|
502 |
+
[Block(decoder_embed_dim, num_heads, mlp_ratio, qkv_bias=True, norm_layer=norm_layer) for _ in range(depth)]
|
503 |
+
)
|
504 |
+
|
505 |
+
self.decoder_norm = norm_layer(decoder_embed_dim)
|
506 |
+
self.decoder_pred = nn.Linear(decoder_embed_dim,
|
507 |
+
patch_size[0] * patch_size[1] * patch_size[2] * in_chans,
|
508 |
+
bias=True)
|
509 |
+
|
510 |
+
self.initialize_weights()
|
511 |
+
|
512 |
+
def initialize_weights(self):
|
513 |
+
# initialize (and freeze) position embeddings by sin-cos embedding
|
514 |
+
decoder_pos_embed = get_3d_sincos_pos_embed(
|
515 |
+
self.decoder_pos_embed.shape[-1], self.grid_size, add_cls_token=True
|
516 |
+
)
|
517 |
+
self.decoder_pos_embed.data.copy_(torch.from_numpy(decoder_pos_embed).float().unsqueeze(0))
|
518 |
+
|
519 |
+
# timm's trunc_normal_(std=.02) is effectively normal_(std=0.02) as cutoff is too big (2.)
|
520 |
+
torch.nn.init.normal_(self.mask_token, std=0.02)
|
521 |
+
self.apply(_init_weights)
|
522 |
+
|
523 |
+
def forward(
|
524 |
+
self,
|
525 |
+
hidden_states: torch.Tensor,
|
526 |
+
ids_restore: torch.Tensor,
|
527 |
+
temporal_coords: None | torch.Tensor = None,
|
528 |
+
location_coords: None | torch.Tensor = None,
|
529 |
+
input_size: list[int] = None,
|
530 |
+
):
|
531 |
+
# embed tokens
|
532 |
+
x = self.decoder_embed(hidden_states)
|
533 |
+
|
534 |
+
t, h, w = input_size[-3:]
|
535 |
+
decoder_pos_embed = torch.from_numpy(
|
536 |
+
get_3d_sincos_pos_embed(
|
537 |
+
self.decoder_embed_dim,
|
538 |
+
(
|
539 |
+
t // self.patch_size[0],
|
540 |
+
h // self.patch_size[1],
|
541 |
+
w // self.patch_size[2],
|
542 |
+
),
|
543 |
+
add_cls_token=True,
|
544 |
+
)
|
545 |
+
).to(x)
|
546 |
+
|
547 |
+
# append mask tokens to sequence
|
548 |
+
mask_tokens = self.mask_token.repeat(x.shape[0], ids_restore.shape[1] + 1 - x.shape[1], 1)
|
549 |
+
x_ = torch.cat([x[:, 1:, :], mask_tokens], dim=1) # no cls token
|
550 |
+
# unshuffle
|
551 |
+
x_ = torch.gather(x_, dim=1, index=ids_restore.unsqueeze(-1).repeat(1, 1, x.shape[2]).to(x_.device))
|
552 |
+
x = torch.cat([x[:, :1, :], x_], dim=1) # append cls token
|
553 |
+
# add pos embed
|
554 |
+
x = x + decoder_pos_embed
|
555 |
+
|
556 |
+
# remove cls token
|
557 |
+
x_ = x[:, 1:, :]
|
558 |
+
|
559 |
+
if self.temporal_encoding:
|
560 |
+
num_tokens_per_frame = x_.shape[1] // self.num_frames
|
561 |
+
temporal_encoding = self.temporal_embed_dec(temporal_coords, num_tokens_per_frame)
|
562 |
+
# Add temporal encoding w/o cls token
|
563 |
+
x_ = x_ + temporal_encoding
|
564 |
+
if self.location_encoding:
|
565 |
+
location_encoding = self.location_embed_dec(location_coords)
|
566 |
+
# Add location encoding w/o cls token
|
567 |
+
x_ = x_ + location_encoding
|
568 |
+
|
569 |
+
# append cls token
|
570 |
+
x = torch.cat([x[:, :1, :], x_], dim=1)
|
571 |
+
|
572 |
+
# apply Transformer layers (blocks)
|
573 |
+
for block in self.decoder_blocks:
|
574 |
+
x = block(x)
|
575 |
+
x = self.decoder_norm(x)
|
576 |
+
|
577 |
+
# predictor projection
|
578 |
+
pred = self.decoder_pred(x)
|
579 |
+
|
580 |
+
# remove cls token
|
581 |
+
pred = pred[:, 1:, :]
|
582 |
+
|
583 |
+
return pred
|
584 |
+
|
585 |
+
|
586 |
+
class PrithviMAE(nn.Module):
|
587 |
+
""" Prithvi Masked Autoencoder"""
|
588 |
+
|
589 |
+
def __init__(self,
|
590 |
+
img_size: int | Tuple[int, int] = 224,
|
591 |
+
patch_size: int | Tuple[int, int, int] = (1, 16, 16),
|
592 |
+
num_frames: int = 3,
|
593 |
+
in_chans: int = 3,
|
594 |
+
embed_dim: int = 1024,
|
595 |
+
depth: int = 24,
|
596 |
+
num_heads: int = 16,
|
597 |
+
decoder_embed_dim: int = 512,
|
598 |
+
decoder_depth: int = 8,
|
599 |
+
decoder_num_heads: int = 16,
|
600 |
+
mlp_ratio: float = 4.,
|
601 |
+
norm_layer: nn.Module = nn.LayerNorm,
|
602 |
+
norm_pix_loss: bool = False,
|
603 |
+
coords_encoding: List[str] | None = None,
|
604 |
+
coords_scale_learn: bool = False,
|
605 |
+
encoder_only: bool = False,
|
606 |
+
**kwargs,
|
607 |
+
):
|
608 |
+
super().__init__()
|
609 |
+
|
610 |
+
self.encoder = PrithviViT(
|
611 |
+
img_size=img_size,
|
612 |
+
num_frames=num_frames,
|
613 |
+
patch_size=patch_size,
|
614 |
+
in_chans=in_chans,
|
615 |
+
embed_dim=embed_dim,
|
616 |
+
depth=depth,
|
617 |
+
num_heads=num_heads,
|
618 |
+
mlp_ratio=mlp_ratio,
|
619 |
+
norm_layer=norm_layer,
|
620 |
+
coords_encoding=coords_encoding,
|
621 |
+
coords_scale_learn=coords_scale_learn,
|
622 |
+
)
|
623 |
+
|
624 |
+
self.encoder_only = encoder_only
|
625 |
+
|
626 |
+
if not encoder_only:
|
627 |
+
self.decoder = MAEDecoder(
|
628 |
+
patch_size=patch_size,
|
629 |
+
grid_size=self.encoder.patch_embed.grid_size,
|
630 |
+
in_chans=in_chans,
|
631 |
+
encoder_embed_dim=embed_dim,
|
632 |
+
decoder_embed_dim=decoder_embed_dim,
|
633 |
+
depth=decoder_depth,
|
634 |
+
num_heads=decoder_num_heads,
|
635 |
+
mlp_ratio=mlp_ratio,
|
636 |
+
norm_layer=norm_layer,
|
637 |
+
coords_encoding=coords_encoding,
|
638 |
+
coords_scale_learn=coords_scale_learn,
|
639 |
+
)
|
640 |
+
else:
|
641 |
+
self.decoder = nn.Identity()
|
642 |
+
|
643 |
+
self.norm_pix_loss = norm_pix_loss
|
644 |
+
|
645 |
+
def patchify(self, pixel_values):
|
646 |
+
"""
|
647 |
+
Args:
|
648 |
+
pixel_values (torch.FloatTensor of shape `(batch_size, num_channels, time, height, width)`):
|
649 |
+
Pixel values.
|
650 |
+
|
651 |
+
Returns:
|
652 |
+
torch.FloatTensor of shape `(batch_size, num_patches, patch_size[0]*patch_size[1]*patch_size[2] * num_channels)`:
|
653 |
+
Patchified pixel values.
|
654 |
+
"""
|
655 |
+
patch_size_t, patch_size_h, patch_size_w = self.encoder.patch_embed.patch_size
|
656 |
+
num_channels = self.encoder.in_chans
|
657 |
+
|
658 |
+
# patchify
|
659 |
+
patchified_pixel_values = rearrange(pixel_values, 'b c (t s) (h p) (w q) -> b (t h w) (s p q c)',
|
660 |
+
c=num_channels, s=patch_size_t, p=patch_size_h, q=patch_size_w)
|
661 |
+
|
662 |
+
|
663 |
+
return patchified_pixel_values
|
664 |
+
|
665 |
+
def unpatchify(self, patchified_pixel_values, image_size: Tuple[int, int] | None = None):
|
666 |
+
"""
|
667 |
+
Args:
|
668 |
+
patchified_pixel_values (`torch.FloatTensor` of shape
|
669 |
+
`(batch_size, num_patches, patch_size[0]*patch_size[1]*patch_size[2] * num_channels)`:
|
670 |
+
Patchified pixel values.
|
671 |
+
image_size (`Tuple[int, int]`, *optional*):
|
672 |
+
Original image size.
|
673 |
+
|
674 |
+
Returns:
|
675 |
+
`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`:
|
676 |
+
Pixel values.
|
677 |
+
"""
|
678 |
+
patch_size_t, patch_size_h, patch_size_w = self.encoder.patch_embed.patch_size
|
679 |
+
image_size = to_2tuple(image_size) if image_size is not None else self.encoder.img_size
|
680 |
+
original_height, original_width = image_size
|
681 |
+
num_patches_h = original_height // patch_size_h
|
682 |
+
num_patches_w = original_width // patch_size_w
|
683 |
+
num_channels = self.encoder.in_chans
|
684 |
+
|
685 |
+
pixel_values = rearrange(patchified_pixel_values, 'b (t h w) (s p q c) -> b c (t s) (h p) (w q)',
|
686 |
+
c=num_channels, h=num_patches_h, w=num_patches_w,
|
687 |
+
s=patch_size_t, p=patch_size_h, q=patch_size_w)
|
688 |
+
return pixel_values
|
689 |
+
|
690 |
+
def forward_loss(self, pixel_values, pred, mask):
|
691 |
+
"""
|
692 |
+
Args:
|
693 |
+
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, time, height, width)`):
|
694 |
+
Pixel values.
|
695 |
+
pred (`torch.FloatTensor` of shape `(batch_size, num_patches, patch_size[0]*patch_size[1]*patch_size[2] * num_channels)`:
|
696 |
+
Predicted pixel values.
|
697 |
+
mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
|
698 |
+
Tensor indicating which patches are masked (1) and which are not (0).
|
699 |
+
|
700 |
+
Returns:
|
701 |
+
`torch.FloatTensor`: Pixel reconstruction loss.
|
702 |
+
"""
|
703 |
+
target = self.patchify(pixel_values)
|
704 |
+
if self.norm_pix_loss:
|
705 |
+
mean = target.mean(dim=-1, keepdim=True)
|
706 |
+
var = target.var(dim=-1, keepdim=True)
|
707 |
+
target = (target - mean) / (var + 1.0e-6) ** 0.5
|
708 |
+
|
709 |
+
loss = (pred - target) ** 2
|
710 |
+
loss = loss.mean(dim=-1) # [N, L], mean loss per patch
|
711 |
+
loss = (loss * mask).sum() / mask.sum() # mean loss on removed patches
|
712 |
+
return loss
|
713 |
+
|
714 |
+
def forward(
|
715 |
+
self,
|
716 |
+
pixel_values: torch.Tensor,
|
717 |
+
temporal_coords: None | torch.Tensor = None,
|
718 |
+
location_coords: None | torch.Tensor = None,
|
719 |
+
mask_ratio: float = 0.75
|
720 |
+
):
|
721 |
+
if len(pixel_values.shape) == 4 and self.encoder.patch_embed.input_size[0] == 1:
|
722 |
+
# add time dim
|
723 |
+
pixel_values = pixel_values.unsqueeze(2)
|
724 |
+
|
725 |
+
latent, mask, ids_restore = self.encoder(pixel_values, temporal_coords, location_coords, mask_ratio)
|
726 |
+
pred = self.decoder(latent, ids_restore, temporal_coords, location_coords, input_size=pixel_values.shape)
|
727 |
+
loss = self.forward_loss(pixel_values, pred, mask)
|
728 |
+
return loss, pred, mask
|
729 |
+
|
730 |
+
def forward_features(
|
731 |
+
self,
|
732 |
+
x: torch.Tensor,
|
733 |
+
temporal_coords: None | torch.Tensor = None,
|
734 |
+
location_coords: None | torch.Tensor = None,
|
735 |
+
) -> List[torch.Tensor]:
|
736 |
+
return self.encoder.forward_features(x, temporal_coords, location_coords)
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
torchvision
|
3 |
+
timm
|
4 |
+
einops
|
5 |
+
rasterio
|