File size: 3,811 Bytes
49cd859
 
6a86fd0
49cd859
 
6a86fd0
bddfbb3
6a86fd0
 
 
 
5eb3d04
64508fb
 
6a86fd0
64508fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a86fd0
49cd859
 
 
bddfbb3
 
49cd859
bddfbb3
 
bd70421
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f64ee7
bd70421
 
bddfbb3
bd70421
 
 
d9c527c
bd70421
 
d9c527c
bd70421
 
 
 
 
 
 
 
 
bddfbb3
bd70421
 
 
 
 
 
 
 
 
 
 
 
 
d9c527c
 
bd70421
bddfbb3
bd70421
 
64508fb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
---
metrics:
- rouge
- bleu
- bleurt
model-index:
- name: ibleducation/ibl-tutoring-chat-7B
  results:
  - task:
      name: truthfulqa_gen
      type: text-generation
    dataset:
      type: truthful_qa
      name: Truthful QA
    metrics:
    - type: bleurt
      name: bleurt_max
      value: -0.5572
    - type: bleurt
      name: bleurt_acc
      value: 0.4321
    - type: bleurt
      name: bleurt_diff
      value: -0.0725
    - type: bleu
      name: bleu_max
      value: 22.5935
    - type: bleu
      name: bleu_acc
      value: 0.3758
    - type: bleu
      name: bleu_diff
      value: -2.5541
    - type: rouge
      name: rouge1_max
      value: 50.0851
    - type: rouge
      name: rouge1_acc
      value: 0.3978
    - type: rouge
      name: rouge1_diff
      value: -3.5142
    - type: rouge
      name: rouge2_max
      value: 34.7473
    - type: rouge
      name: rouge2_acc
      value: 0.339
    - type: rouge
      name: rouge2_diff
      value: -4.5082
    - type: rouge
      name: rougeL_max
      value: 46.1054
    - type: rouge
      name: rougeL_acc
      value: 0.3745
    - type: rouge
      name: rougeL_diff
      value: -4.0046
datasets:
- ibleducation/ibl-best-practices-instructor-dataset
---
library_name: transformers
---

# ibleducation/ibl-tutoring-chat-7B
ibleducation/ibl-tutoring-chat-7B is a model finetuned on top of openchat/openchat_3.5

This model is finetuned to give responses in a way befitting of a professional teacher. 
It is finetuned to exhibit characteristics and virtues such as compassion, encouragement, friendliness and more.


## Example Conversations
1. Question:  I'm having trouble understanding this art movement. Can you help me? \
   Answer:
   ```code
   Yes I can assist you, that is what I am here for. We can start by analyzing the artists' techniques, their motivations, and find creative ways to connect with the movement. Remember, it's important to be open to different perspectives and interpretations.
   ```
   
2. Question: I am thinking of stopping school do you think it is right? \
   Answer:
   ```code
   I understand that school can be challenging, but I believe that education is important. I'm here to for you. Where you have troubles, I will be happy to help
   ```
  

## Model Details

- **Developed by:** [IBL Education](https://ibl.ai)
- **Model type:** [Mistral-7B-v0.1](https://huggingface.co./mistralai/Mistral-7B-v0.1)
- **Base Model:** [OpenChat 3.5](https://huggingface.co./openchat/openchat_3.5)
- **Language:** English
- **Finetuned from weights:** [OpenChat 3.5](https://huggingface.co./openchat/openchat_3.5)
- **Finetuned on data:**
  - [ibleducation/ibl-best-practices-instructor-dataset](https://huggingface.co./datasets/ibleducation/ibl-best-practices-instructor-dataset)
- **Model License:** Apache 2.0

## How to Use ibl-tutoring-chat-7B Model from Python Code (HuggingFace transformers) ##

### Install the necessary packages

Requires: [transformers](https://pypi.org/project/transformers/) 4.35.0 or later, and [accelerate](https://pypi.org/project/accelerate/) 0.23.0 or later.

```shell
pip install transformers==4.35.0
pip install accelerate==0.23.0
```
### You can then try the following example code

```python
from transformers import AutoModelForCausalLM, AutoTokenizer
import transformers
import torch

model_id = "ibleducation/ibl-tutoring-chat-7B"

tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
  model_id,
  device_map="auto",
)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    tokenizer=tokenizer,
)
prompt = "<s>What makes a good teacher?</s>"

response = pipeline(prompt)
print(response['generated_text'])
```
**Important** - Use the prompt template below for ibl-tutoring-chat-7B:
```
<s>{prompt}</s>
```