Update README.md
Browse files
README.md
CHANGED
@@ -1,199 +1,78 @@
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
-
tags:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
Use the code below to get started with the model.
|
73 |
-
|
74 |
-
[More Information Needed]
|
75 |
-
|
76 |
-
## Training Details
|
77 |
-
|
78 |
-
### Training Data
|
79 |
-
|
80 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
-
|
82 |
-
[More Information Needed]
|
83 |
-
|
84 |
-
### Training Procedure
|
85 |
-
|
86 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
-
|
88 |
-
#### Preprocessing [optional]
|
89 |
-
|
90 |
-
[More Information Needed]
|
91 |
-
|
92 |
-
|
93 |
-
#### Training Hyperparameters
|
94 |
-
|
95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
-
|
97 |
-
#### Speeds, Sizes, Times [optional]
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
-
|
103 |
-
## Evaluation
|
104 |
-
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
+
tags:
|
4 |
+
- radiology
|
5 |
+
- mammo_crop
|
6 |
+
- mammography
|
7 |
+
- medical_imaging
|
8 |
+
license: apache-2.0
|
9 |
+
base_model:
|
10 |
+
- timm/mobilenetv3_small_100.lamb_in1k
|
11 |
+
pipeline_tag: object-detection
|
12 |
---
|
13 |
|
14 |
+
This model crops mammography images to eliminate unnecessary background. The model uses a lightweight `mobilenetv3_small_100` backbone and predicts normalized `xywh` coordinates.
|
15 |
+
|
16 |
+
The model was trained and validated using 54,706 screening mammography images from the [RSNA Screening Mammography Breast Cancer Detection](https://www.kaggle.com/competitions/rsna-breast-cancer-detection/) challenge using a 90%/10% split.
|
17 |
+
On single-fold validation, the model achieved mean absolute errors (normalized coordinates) of:
|
18 |
+
```
|
19 |
+
x: 0.0032
|
20 |
+
y: 0.0030
|
21 |
+
w: 0.0054
|
22 |
+
h: 0.0088
|
23 |
+
```
|
24 |
+
|
25 |
+
The ground-truth coordinates were generated using the following code:
|
26 |
+
|
27 |
+
```
|
28 |
+
import cv2
|
29 |
+
|
30 |
+
def crop_roi(img):
|
31 |
+
img = img[5:-5, 5:-5]
|
32 |
+
|
33 |
+
output = cv2.connectedComponentsWithStats((img > 10).astype(np.uint8)[:, :], 8, cv2.CV_32S) #
|
34 |
+
stats = output[2]
|
35 |
+
|
36 |
+
idx = stats[1:, 4].argmax() + 1
|
37 |
+
x1, y1, w, h = stats[idx][:4]
|
38 |
+
x1 = max(0, x1 - 5)
|
39 |
+
y1 = max(0, y1 - 5)
|
40 |
+
|
41 |
+
img_h, img_w = img.shape[:2]
|
42 |
+
|
43 |
+
return x1, y1, w, h)
|
44 |
+
```
|
45 |
+
|
46 |
+
While not guaranteed to be foolproof, a cursory review of a sample of cropped images demonstrated excellent performance.
|
47 |
+
The model was trained with a large batch size (256) to mitigate noise.
|
48 |
+
|
49 |
+
To use the model:
|
50 |
+
```
|
51 |
+
import cv2
|
52 |
+
import torch
|
53 |
+
from transformers import AutoModel
|
54 |
+
|
55 |
+
model = AutoModel.from_pretrained("ianpan/mammo-crop", trust_remote_code=True)
|
56 |
+
model = model.eval()
|
57 |
+
img = cv2.imread(..., 0)
|
58 |
+
img_shape = torch.tensor([img.shape[:2]])
|
59 |
+
x = model.preprocess(img)
|
60 |
+
x = torch.from_numpy(x).unsqueeze(0).unsqueeze(0)
|
61 |
+
x = x.float()
|
62 |
+
|
63 |
+
# if you do not provide img_shape
|
64 |
+
# model will return normalized coordinates
|
65 |
+
with torch.inference_mode():
|
66 |
+
coords = model(x, img_shape)
|
67 |
+
|
68 |
+
# only 1 sample in batch
|
69 |
+
coords = coords[0].numpy()
|
70 |
+
x, y, w, h = coords
|
71 |
+
# coords already rescaled with img_shape
|
72 |
+
cropped_img = img[y: y + h, x: x + w]
|
73 |
+
```
|
74 |
+
|
75 |
+
If you have `pydicom` installed, you can also load a DICOM image directly:
|
76 |
+
```
|
77 |
+
img = model.load_image_from_dicom(path_to_dicom)
|
78 |
+
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|