File size: 7,495 Bytes
cfcee64 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 |
import torch
import torch.nn as nn
import torch.nn.functional as F
from functools import partial
from typing import List, Optional
class Conv2dAct(nn.Sequential):
def __init__(
self,
in_channels: int,
out_channels: int,
kernel_size: int,
padding: int = 0,
stride: int = 1,
norm_layer: str = "bn",
num_groups: int = 32, # for GroupNorm,
activation: str = "ReLU",
inplace: bool = True, # for activation
):
if norm_layer == "bn":
NormLayer = nn.BatchNorm2d
elif norm_layer == "gn":
NormLayer = partial(nn.GroupNorm, num_groups=num_groups)
else:
raise Exception(
f"`norm_layer` must be one of [`bn`, `gn`], got `{norm_layer}`"
)
super().__init__()
self.conv = nn.Conv2d(
in_channels,
out_channels,
kernel_size=kernel_size,
stride=stride,
padding=padding,
bias=False,
)
self.norm = NormLayer(out_channels)
self.act = getattr(nn, activation)(inplace=inplace)
def forward(self, x: torch.Tensor) -> torch.Tensor:
return self.act(self.norm(self.conv(x)))
class SCSEModule(nn.Module):
def __init__(
self,
in_channels: int,
reduction: int = 16,
activation: str = "ReLU",
inplace: bool = False,
):
super().__init__()
self.cSE = nn.Sequential(
nn.AdaptiveAvgPool2d(1),
nn.Conv2d(in_channels, in_channels // reduction, 1),
getattr(nn, activation)(inplace=inplace),
nn.Conv2d(in_channels // reduction, in_channels, 1),
)
self.sSE = nn.Conv2d(in_channels, 1, 1)
def forward(self, x: torch.Tensor) -> torch.Tensor:
return x * self.cSE(x).sigmoid() + x * self.sSE(x).sigmoid()
class Attention(nn.Module):
def __init__(self, name: str, **params):
super().__init__()
if name is None:
self.attention = nn.Identity(**params)
elif name == "scse":
self.attention = SCSEModule(**params)
else:
raise ValueError("Attention {} is not implemented".format(name))
def forward(self, x: torch.Tensor) -> torch.Tensor:
return self.attention(x)
class DecoderBlock(nn.Module):
def __init__(
self,
in_channels: int,
skip_channels: int,
out_channels: int,
norm_layer: str = "bn",
activation: str = "ReLU",
attention_type: Optional[str] = None,
):
super().__init__()
self.conv1 = Conv2dAct(
in_channels + skip_channels,
out_channels,
kernel_size=3,
padding=1,
norm_layer=norm_layer,
activation=activation,
)
self.attention1 = Attention(
attention_type, in_channels=in_channels + skip_channels
)
self.conv2 = Conv2dAct(
out_channels,
out_channels,
kernel_size=3,
padding=1,
norm_layer=norm_layer,
activation=activation,
)
self.attention2 = Attention(attention_type, in_channels=out_channels)
def forward(
self, x: torch.Tensor, skip: Optional[torch.Tensor] = None
) -> torch.Tensor:
if skip is not None:
h, w = skip.shape[2:]
x = F.interpolate(x, size=(h, w), mode="nearest")
x = torch.cat([x, skip], dim=1)
x = self.attention1(x)
else:
x = F.interpolate(x, scale_factor=(2, 2), mode="nearest")
x = self.conv1(x)
x = self.conv2(x)
x = self.attention2(x)
return x
class CenterBlock(nn.Sequential):
def __init__(
self,
in_channels: int,
out_channels: int,
norm_layer: str = "bn",
activation: str = "ReLU",
):
conv1 = Conv2dAct(
in_channels,
out_channels,
kernel_size=3,
padding=1,
norm_layer=norm_layer,
activation=activation,
)
conv2 = Conv2dAct(
out_channels,
out_channels,
kernel_size=3,
padding=1,
norm_layer=norm_layer,
activation=activation,
)
super().__init__(conv1, conv2)
class UnetDecoder(nn.Module):
def __init__(
self,
decoder_n_blocks: int,
decoder_channels: List[int],
encoder_channels: List[int],
decoder_center_block: bool = False,
decoder_norm_layer: str = "bn",
decoder_attention_type: Optional[str] = None,
):
super().__init__()
self.decoder_n_blocks = decoder_n_blocks
self.decoder_channels = decoder_channels
self.encoder_channels = encoder_channels
self.decoder_center_block = decoder_center_block
self.decoder_norm_layer = decoder_norm_layer
self.decoder_attention_type = decoder_attention_type
if self.decoder_n_blocks != len(self.decoder_channels):
raise ValueError(
"Model depth is {}, but you provide `decoder_channels` for {} blocks.".format(
self.decoder_n_blocks, len(self.decoder_channels)
)
)
# reverse channels to start from head of encoder
encoder_channels = encoder_channels[::-1]
# computing blocks input and output channels
head_channels = encoder_channels[0]
in_channels = [head_channels] + list(self.decoder_channels[:-1])
skip_channels = list(encoder_channels[1:]) + [0]
out_channels = self.decoder_channels
if self.decoder_center_block:
self.center = CenterBlock(
head_channels, head_channels, norm_layer=self.decoder_norm_layer
)
else:
self.center = nn.Identity()
# combine decoder keyword arguments
kwargs = dict(
norm_layer=self.decoder_norm_layer,
attention_type=self.decoder_attention_type,
)
blocks = [
DecoderBlock(in_ch, skip_ch, out_ch, **kwargs)
for in_ch, skip_ch, out_ch in zip(in_channels, skip_channels, out_channels)
]
self.blocks = nn.ModuleList(blocks)
def forward(self, features: List[torch.Tensor]) -> torch.Tensor:
features = features[::-1] # reverse channels to start from head of encoder
head = features[0]
skips = features[1:]
output = [self.center(head)]
for i, decoder_block in enumerate(self.blocks):
skip = skips[i] if i < len(skips) else None
output.append(decoder_block(output[-1], skip))
return output
class SegmentationHead(nn.Module):
def __init__(
self,
in_channels: int,
out_channels: int,
size: int,
kernel_size: int = 3,
dropout: float = 0.0,
):
super().__init__()
self.drop = nn.Dropout2d(p=dropout)
self.conv = nn.Conv2d(
in_channels, out_channels, kernel_size=kernel_size, padding=kernel_size // 2
)
if isinstance(size, (tuple, list)):
self.up = nn.Upsample(size=size, mode="bilinear")
else:
self.up = nn.Identity()
def forward(self, x: torch.Tensor) -> torch.Tensor:
return self.up(self.conv(self.drop(x)))
|