Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
datasets:
|
3 |
+
- iamtarun/python_code_instructions_18k_alpaca
|
4 |
+
language:
|
5 |
+
- en
|
6 |
+
metrics:
|
7 |
+
- code_eval
|
8 |
+
library_name: transformers
|
9 |
+
pipeline_tag: text-generation
|
10 |
+
tags:
|
11 |
+
- code
|
12 |
+
widget:
|
13 |
+
- text: 'def isprime(num):'
|
14 |
+
example_title: Code Example 1
|
15 |
+
- text: 'def factorial(num):'
|
16 |
+
example_title: Code Example 2
|
17 |
+
- text: 'def square(num):'
|
18 |
+
example_title: Code Example 3
|
19 |
+
---
|
20 |
+
|
21 |
+
# Competitive Programming LLM for Python Language
|
22 |
+
|
23 |
+
This model is a finetuned version of [codegen350M-mono](https://huggingface.co/Salesforce/codegen-350M-mono) on python code [dataset](https://huggingface.co/datasets/iamtarun/python_code_instructions_18k_alpaca) that uses alpaca style prompts while training.
|
24 |
+
|
25 |
+
## Prompt function
|
26 |
+
|
27 |
+
```python
|
28 |
+
'''
|
29 |
+
This function generates prompts using the problem description and input.
|
30 |
+
@param1 instruction: str - text problem description
|
31 |
+
@param2 inputs: str - input to the program
|
32 |
+
'''
|
33 |
+
def generate_prompt(instruction, inputs=""):
|
34 |
+
text = ("Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n"
|
35 |
+
"### Instruction:\n"
|
36 |
+
f"{instruction}\n\n"
|
37 |
+
"### Input:\n"
|
38 |
+
f"{inputs}\n\n"
|
39 |
+
"### Output:\n")
|
40 |
+
return text
|
41 |
+
```
|
42 |
+
|
43 |
+
## Usage
|
44 |
+
|
45 |
+
```python
|
46 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
47 |
+
|
48 |
+
# load model and tokenizer
|
49 |
+
model = AutoModelForCausalLM.from_pretrained("iamtarun/codegen-350M-mono-4bit-qlora", device_map="auto")
|
50 |
+
tokenizer = AutoTokenizer.from_pretrained("iamtarun/codegen-350M-mono-4bit-qlora")
|
51 |
+
|
52 |
+
# loading model for inference
|
53 |
+
model.eval()
|
54 |
+
|
55 |
+
# inference function
|
56 |
+
'''
|
57 |
+
This function takes text prompt as input which is generated from the generate_prompt function and returns the generated response
|
58 |
+
|
59 |
+
@param1 prompt: str - text prompt generated using generate_prompt function.
|
60 |
+
'''
|
61 |
+
def pipe(prompt):
|
62 |
+
device = "cuda"
|
63 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(device)
|
64 |
+
with torch.no_grad():
|
65 |
+
output = model.generate(**inputs,
|
66 |
+
max_length=512,
|
67 |
+
do_sample=True,
|
68 |
+
temperature=0.5,
|
69 |
+
top_p=0.95,
|
70 |
+
repetition_penalty=1.15)
|
71 |
+
return tokenizer.decode(output[0].tolist(),
|
72 |
+
skip_special_tokens=True,
|
73 |
+
clean_up_tokenization_space=False)
|
74 |
+
|
75 |
+
# generating code for a problem description
|
76 |
+
instruction = "Write a function to calculate square of a number in python"
|
77 |
+
inputs = "number = 5"
|
78 |
+
prompt = generate_prompt(instruction, inputs)
|
79 |
+
print(pipe(prompt))
|
80 |
+
print("\n", "="*100)
|
81 |
+
```
|