iHateNLP commited on
Commit
4f5a7fb
·
verified ·
1 Parent(s): 70708ba

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +116 -216
README.md CHANGED
@@ -1,216 +1,116 @@
1
- ---
2
- library_name: transformers
3
- license: apache-2.0
4
- model_name: MBart-Urdu-Text-Summarization
5
- pipeline_tag: text-generation
6
- tags:
7
- - text-generation
8
- - mbart
9
- - nlp
10
- - transformers
11
- author: Wali Muhammad Ahmad
12
- private: false
13
- gated: false
14
- inference: true
15
- mask_token: <mask>
16
- widget_data:
17
- text: Enter your para here
18
- transformers_info:
19
- auto_class: MBartForConditionalGeneration
20
- processor: AutoTokenizer
21
- ---
22
-
23
- # Model Card for Model ID
24
-
25
- <!-- Provide a quick summary of what the model is/does. -->
26
-
27
-
28
-
29
- ## Model Details
30
-
31
- ### Model Description
32
-
33
- <!-- Provide a longer summary of what this model is. -->
34
-
35
-
36
-
37
- - **Developed by:** [More Information Needed]
38
- - **Funded by [optional]:** [More Information Needed]
39
- - **Shared by [optional]:** [More Information Needed]
40
- - **Model type:** [More Information Needed]
41
- - **Language(s) (NLP):** [More Information Needed]
42
- - **License:** apache-2.0
43
- - **Finetuned from model [optional]:** [More Information Needed]
44
-
45
- ### Model Sources [optional]
46
-
47
- <!-- Provide the basic links for the model. -->
48
-
49
- - **Repository:** [More Information Needed]
50
- - **Paper [optional]:** [More Information Needed]
51
- - **Demo [optional]:** [More Information Needed]
52
-
53
- ## Uses
54
-
55
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
56
-
57
- ### Direct Use
58
-
59
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
60
-
61
- [More Information Needed]
62
-
63
- ### Downstream Use [optional]
64
-
65
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
66
-
67
- [More Information Needed]
68
-
69
- ### Out-of-Scope Use
70
-
71
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
72
-
73
- [More Information Needed]
74
-
75
- ## Bias, Risks, and Limitations
76
-
77
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
78
-
79
- [More Information Needed]
80
-
81
- ### Recommendations
82
-
83
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
84
-
85
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
86
-
87
- ## How to Get Started with the Model
88
-
89
- Use the code below to get started with the model.
90
-
91
- [More Information Needed]
92
-
93
- ## Training Details
94
-
95
- ### Training Data
96
-
97
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
98
-
99
- [More Information Needed]
100
-
101
- ### Training Procedure
102
-
103
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
104
-
105
- #### Preprocessing [optional]
106
-
107
- [More Information Needed]
108
-
109
-
110
- #### Training Hyperparameters
111
-
112
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
113
-
114
- #### Speeds, Sizes, Times [optional]
115
-
116
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
117
-
118
- [More Information Needed]
119
-
120
- ## Evaluation
121
-
122
- <!-- This section describes the evaluation protocols and provides the results. -->
123
-
124
- ### Testing Data, Factors & Metrics
125
-
126
- #### Testing Data
127
-
128
- <!-- This should link to a Dataset Card if possible. -->
129
-
130
- [More Information Needed]
131
-
132
- #### Factors
133
-
134
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
135
-
136
- [More Information Needed]
137
-
138
- #### Metrics
139
-
140
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
141
-
142
- [More Information Needed]
143
-
144
- ### Results
145
-
146
- [More Information Needed]
147
-
148
- #### Summary
149
-
150
-
151
-
152
- ## Model Examination [optional]
153
-
154
- <!-- Relevant interpretability work for the model goes here -->
155
-
156
- [More Information Needed]
157
-
158
- ## Environmental Impact
159
-
160
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
161
-
162
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
163
-
164
- - **Hardware Type:** [More Information Needed]
165
- - **Hours used:** [More Information Needed]
166
- - **Cloud Provider:** [More Information Needed]
167
- - **Compute Region:** [More Information Needed]
168
- - **Carbon Emitted:** [More Information Needed]
169
-
170
- ## Technical Specifications [optional]
171
-
172
- ### Model Architecture and Objective
173
-
174
- [More Information Needed]
175
-
176
- ### Compute Infrastructure
177
-
178
- [More Information Needed]
179
-
180
- #### Hardware
181
-
182
- [More Information Needed]
183
-
184
- #### Software
185
-
186
- [More Information Needed]
187
-
188
- ## Citation [optional]
189
-
190
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
191
-
192
- **BibTeX:**
193
-
194
- [More Information Needed]
195
-
196
- **APA:**
197
-
198
- [More Information Needed]
199
-
200
- ## Glossary [optional]
201
-
202
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
203
-
204
- [More Information Needed]
205
-
206
- ## More Information [optional]
207
-
208
- [More Information Needed]
209
-
210
- ## Model Card Authors [optional]
211
-
212
- [More Information Needed]
213
-
214
- ## Model Card Contact
215
-
216
- [More Information Needed]
 
1
+ library_name: transformers
2
+ license: mit
3
+ model_name: MBart-Urdu-Text-Summarization
4
+ pipeline_tag: summarization
5
+ tags:
6
+ - text-generation
7
+ - mbart
8
+ - nlp
9
+ - transformers
10
+ - text-generation-inference
11
+ author: Wali Muhammad Ahmad
12
+ private: false
13
+ gated: false
14
+ inference: true
15
+ mask_token: <mask>
16
+ widget_data:
17
+ text: Enter your para here
18
+ transformers_info:
19
+ auto_class: MBartForConditionalGeneration
20
+ processor: AutoTokenizer
21
+ language:
22
+ - en
23
+ - ur
24
+ ---
25
+
26
+ # Model Card
27
+
28
+ MBart-Urdu-Text-Summarization is a fine-tuned MBart model designed for summarizing Urdu text. It leverages the multilingual capabilities of MBart to generate concise and accurate summaries for Urdu paragraphs.
29
+
30
+ ## Model Details
31
+
32
+ ### Model Description
33
+
34
+ This model is based on the MBart architecture, which is a sequence-to-sequence model pre-trained on multilingual data. It has been fine-tuned specifically for Urdu text summarization tasks. The model is capable of understanding and generating text in both English and Urdu, making it suitable for multilingual applications.
35
+
36
+ ### Model Sources [optional]
37
+
38
+ - **Repository:** [https://github.com/WaliMuhammadAhmad/UrduTextSummarizationUsingm-BART]
39
+ - **Paper [Multilingual Denoising Pre-training for Neural Machine Translation]:** [https://arxiv.org/abs/2001.08210]
40
+
41
+ ## Uses
42
+
43
+ ### Direct Use
44
+
45
+ This model can be used directly for Urdu text summarization tasks. It is suitable for applications such as news summarization, document summarization, and content generation.
46
+
47
+ ### Downstream Use [optional]
48
+
49
+ The model can be fine-tuned for specific downstream tasks such as sentiment analysis, question answering, or machine translation for Urdu and English.
50
+
51
+ ### Out-of-Scope Use
52
+
53
+ This model is not intended for generating biased, harmful, or misleading content. It should not be used for tasks outside of text summarization without proper fine-tuning and evaluation.
54
+
55
+ ## Bias, Risks, and Limitations
56
+
57
+ - The model may generate biased or inappropriate content if the input text contains biases.
58
+ - It is trained on a specific dataset and may not generalize well to other domains or languages.
59
+ - The model's performance may degrade for very long input texts.
60
+
61
+ ### Recommendations
62
+
63
+ Users should carefully evaluate the model's outputs for biases and appropriateness. Fine-tuning on domain-specific data is recommended for better performance in specialized applications.
64
+
65
+ ## How to Get Started with the Model
66
+
67
+ Use the code below to get started with the model.
68
+
69
+ ```python
70
+ from transformers import AutoTokenizer, MBartForConditionalGeneration
71
+
72
+ # Load the model and tokenizer
73
+ model_name = "ihatenlp/MBart-Urdu-Text-Summarization"
74
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
75
+ model = MBartForConditionalGeneration.from_pretrained(model_name)
76
+
77
+ # Example input text
78
+ input_text = "Enter your Urdu paragraph here."
79
+
80
+ # Tokenize and generate summary
81
+ inputs = tokenizer(input_text, return_tensors="pt")
82
+ summary_ids = model.generate(inputs["input_ids"], max_length=50, num_beams=4, early_stopping=True)
83
+ summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
84
+
85
+ print("Summary:", summary)
86
+ ```
87
+
88
+ ## Environmental Impact
89
+
90
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
91
+
92
+ ## Citation [optional]
93
+
94
+ **BibTeX:**
95
+
96
+ ```bibtex
97
+ @misc{liu2020multilingualdenoisingpretrainingneural,
98
+ title={Multilingual Denoising Pre-training for Neural Machine Translation},
99
+ author={Yinhan Liu and Jiatao Gu and Naman Goyal and Xian Li and Sergey Edunov and Marjan Ghazvininejad and Mike Lewis and Luke Zettlemoyer},
100
+ year={2020},
101
+ eprint={2001.08210},
102
+ archivePrefix={arXiv},
103
+ primaryClass={cs.CL},
104
+ url={https://arxiv.org/abs/2001.08210},
105
+ }
106
+ ```
107
+
108
+ ## Model Card Authors [optional]
109
+
110
+ - **Wali Muhammad Ahmad**
111
+ - **Muhammad Labeeb Tariq**
112
+
113
+ ## Model Card Contact
114
+
115
+ - **Email:** [[email protected]]
116
+ - **Hugging Face Profile:** [Wali Muhammad Ahmad](https://huggingface.co/ihatenlp)