Model save
Browse files- README.md +68 -0
- all_results.json +8 -0
- config.json +1 -1
- generation_config.json +14 -0
- train_results.json +8 -0
- trainer_state.json +2967 -0
README.md
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: Qwen/Qwen2.5-0.5B-Instruct
|
3 |
+
library_name: transformers
|
4 |
+
model_name: qwen-2.5-0.5b-r1-countdown_lr1.0e-6
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
- trl
|
8 |
+
- grpo
|
9 |
+
licence: license
|
10 |
+
---
|
11 |
+
|
12 |
+
# Model Card for qwen-2.5-0.5b-r1-countdown_lr1.0e-6
|
13 |
+
|
14 |
+
This model is a fine-tuned version of [Qwen/Qwen2.5-0.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-0.5B-Instruct).
|
15 |
+
It has been trained using [TRL](https://github.com/huggingface/trl).
|
16 |
+
|
17 |
+
## Quick start
|
18 |
+
|
19 |
+
```python
|
20 |
+
from transformers import pipeline
|
21 |
+
|
22 |
+
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
|
23 |
+
generator = pipeline("text-generation", model="hyunw3/qwen-2.5-0.5b-r1-countdown_lr1.0e-6", device="cuda")
|
24 |
+
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
|
25 |
+
print(output["generated_text"])
|
26 |
+
```
|
27 |
+
|
28 |
+
## Training procedure
|
29 |
+
|
30 |
+
|
31 |
+
|
32 |
+
|
33 |
+
This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).
|
34 |
+
|
35 |
+
### Framework versions
|
36 |
+
|
37 |
+
- TRL: 0.14.0
|
38 |
+
- Transformers: 4.48.1
|
39 |
+
- Pytorch: 2.5.1+cu121
|
40 |
+
- Datasets: 3.1.0
|
41 |
+
- Tokenizers: 0.21.0
|
42 |
+
|
43 |
+
## Citations
|
44 |
+
|
45 |
+
Cite GRPO as:
|
46 |
+
|
47 |
+
```bibtex
|
48 |
+
@article{zhihong2024deepseekmath,
|
49 |
+
title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
|
50 |
+
author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
|
51 |
+
year = 2024,
|
52 |
+
eprint = {arXiv:2402.03300},
|
53 |
+
}
|
54 |
+
|
55 |
+
```
|
56 |
+
|
57 |
+
Cite TRL as:
|
58 |
+
|
59 |
+
```bibtex
|
60 |
+
@misc{vonwerra2022trl,
|
61 |
+
title = {{TRL: Transformer Reinforcement Learning}},
|
62 |
+
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
|
63 |
+
year = 2020,
|
64 |
+
journal = {GitHub repository},
|
65 |
+
publisher = {GitHub},
|
66 |
+
howpublished = {\url{https://github.com/huggingface/trl}}
|
67 |
+
}
|
68 |
+
```
|
all_results.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"total_flos": 0.0,
|
3 |
+
"train_loss": 0.00035568679777363087,
|
4 |
+
"train_runtime": 8958.7654,
|
5 |
+
"train_samples": 45000,
|
6 |
+
"train_samples_per_second": 1.206,
|
7 |
+
"train_steps_per_second": 0.05
|
8 |
+
}
|
config.json
CHANGED
@@ -23,7 +23,7 @@
|
|
23 |
"tie_word_embeddings": true,
|
24 |
"torch_dtype": "bfloat16",
|
25 |
"transformers_version": "4.48.1",
|
26 |
-
"use_cache":
|
27 |
"use_sliding_window": false,
|
28 |
"vocab_size": 151936
|
29 |
}
|
|
|
23 |
"tie_word_embeddings": true,
|
24 |
"torch_dtype": "bfloat16",
|
25 |
"transformers_version": "4.48.1",
|
26 |
+
"use_cache": true,
|
27 |
"use_sliding_window": false,
|
28 |
"vocab_size": 151936
|
29 |
}
|
generation_config.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token_id": 151643,
|
3 |
+
"do_sample": true,
|
4 |
+
"eos_token_id": [
|
5 |
+
151645,
|
6 |
+
151643
|
7 |
+
],
|
8 |
+
"pad_token_id": 151643,
|
9 |
+
"repetition_penalty": 1.1,
|
10 |
+
"temperature": 0.7,
|
11 |
+
"top_k": 20,
|
12 |
+
"top_p": 0.8,
|
13 |
+
"transformers_version": "4.48.1"
|
14 |
+
}
|
train_results.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"total_flos": 0.0,
|
3 |
+
"train_loss": 0.00035568679777363087,
|
4 |
+
"train_runtime": 8958.7654,
|
5 |
+
"train_samples": 45000,
|
6 |
+
"train_samples_per_second": 1.206,
|
7 |
+
"train_steps_per_second": 0.05
|
8 |
+
}
|
trainer_state.json
ADDED
@@ -0,0 +1,2967 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 0.24,
|
5 |
+
"eval_steps": 500,
|
6 |
+
"global_step": 450,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"completion_length": 267.57032012939453,
|
13 |
+
"epoch": 0.0010666666666666667,
|
14 |
+
"grad_norm": 0.21315283923773715,
|
15 |
+
"kl": 0.0,
|
16 |
+
"learning_rate": 1.4285714285714285e-07,
|
17 |
+
"loss": -0.0,
|
18 |
+
"reward": 0.05208333465270698,
|
19 |
+
"reward_std": 0.12187675526365638,
|
20 |
+
"rewards/equation_reward_func": 0.0,
|
21 |
+
"rewards/format_reward_func": 0.05208333465270698,
|
22 |
+
"step": 2
|
23 |
+
},
|
24 |
+
{
|
25 |
+
"completion_length": 258.91667556762695,
|
26 |
+
"epoch": 0.0021333333333333334,
|
27 |
+
"grad_norm": 0.39624029123072774,
|
28 |
+
"kl": 0.0005260705947875977,
|
29 |
+
"learning_rate": 2.857142857142857e-07,
|
30 |
+
"loss": 0.0,
|
31 |
+
"reward": 0.09114583535119891,
|
32 |
+
"reward_std": 0.2148200012743473,
|
33 |
+
"rewards/equation_reward_func": 0.0026041667442768812,
|
34 |
+
"rewards/format_reward_func": 0.08854166837409139,
|
35 |
+
"step": 4
|
36 |
+
},
|
37 |
+
{
|
38 |
+
"completion_length": 254.1770896911621,
|
39 |
+
"epoch": 0.0032,
|
40 |
+
"grad_norm": 0.2789454187627699,
|
41 |
+
"kl": 0.0005211830139160156,
|
42 |
+
"learning_rate": 4.285714285714285e-07,
|
43 |
+
"loss": 0.0,
|
44 |
+
"reward": 0.08333333465270698,
|
45 |
+
"reward_std": 0.20366852125152946,
|
46 |
+
"rewards/equation_reward_func": 0.0026041667442768812,
|
47 |
+
"rewards/format_reward_func": 0.08072916860692203,
|
48 |
+
"step": 6
|
49 |
+
},
|
50 |
+
{
|
51 |
+
"completion_length": 266.03125858306885,
|
52 |
+
"epoch": 0.004266666666666667,
|
53 |
+
"grad_norm": 0.1672287489912653,
|
54 |
+
"kl": 0.0005216598510742188,
|
55 |
+
"learning_rate": 5.714285714285714e-07,
|
56 |
+
"loss": 0.0,
|
57 |
+
"reward": 0.059895834885537624,
|
58 |
+
"reward_std": 0.15923613868653774,
|
59 |
+
"rewards/equation_reward_func": 0.0,
|
60 |
+
"rewards/format_reward_func": 0.059895834885537624,
|
61 |
+
"step": 8
|
62 |
+
},
|
63 |
+
{
|
64 |
+
"completion_length": 248.87240409851074,
|
65 |
+
"epoch": 0.005333333333333333,
|
66 |
+
"grad_norm": 0.3959884726972001,
|
67 |
+
"kl": 0.0006082057952880859,
|
68 |
+
"learning_rate": 7.142857142857143e-07,
|
69 |
+
"loss": 0.0,
|
70 |
+
"reward": 0.09635416883975267,
|
71 |
+
"reward_std": 0.21937653236091137,
|
72 |
+
"rewards/equation_reward_func": 0.0052083334885537624,
|
73 |
+
"rewards/format_reward_func": 0.09114583488553762,
|
74 |
+
"step": 10
|
75 |
+
},
|
76 |
+
{
|
77 |
+
"completion_length": 245.3203182220459,
|
78 |
+
"epoch": 0.0064,
|
79 |
+
"grad_norm": 0.28583532187086624,
|
80 |
+
"kl": 0.0007441043853759766,
|
81 |
+
"learning_rate": 8.57142857142857e-07,
|
82 |
+
"loss": 0.0,
|
83 |
+
"reward": 0.0781250016298145,
|
84 |
+
"reward_std": 0.2006211462430656,
|
85 |
+
"rewards/equation_reward_func": 0.0,
|
86 |
+
"rewards/format_reward_func": 0.0781250016298145,
|
87 |
+
"step": 12
|
88 |
+
},
|
89 |
+
{
|
90 |
+
"completion_length": 232.69531726837158,
|
91 |
+
"epoch": 0.007466666666666667,
|
92 |
+
"grad_norm": 0.30125607821086126,
|
93 |
+
"kl": 0.0013909339904785156,
|
94 |
+
"learning_rate": 1e-06,
|
95 |
+
"loss": 0.0,
|
96 |
+
"reward": 0.1015625016298145,
|
97 |
+
"reward_std": 0.22314835852012038,
|
98 |
+
"rewards/equation_reward_func": 0.0026041667442768812,
|
99 |
+
"rewards/format_reward_func": 0.09895833465270698,
|
100 |
+
"step": 14
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"completion_length": 226.94271278381348,
|
104 |
+
"epoch": 0.008533333333333334,
|
105 |
+
"grad_norm": 0.3849252255439341,
|
106 |
+
"kl": 0.00328826904296875,
|
107 |
+
"learning_rate": 9.999480818449865e-07,
|
108 |
+
"loss": 0.0,
|
109 |
+
"reward": 0.14322916930541396,
|
110 |
+
"reward_std": 0.2906528012827039,
|
111 |
+
"rewards/equation_reward_func": 0.0052083334885537624,
|
112 |
+
"rewards/format_reward_func": 0.1380208362825215,
|
113 |
+
"step": 16
|
114 |
+
},
|
115 |
+
{
|
116 |
+
"completion_length": 185.41146278381348,
|
117 |
+
"epoch": 0.0096,
|
118 |
+
"grad_norm": 0.4848458043128939,
|
119 |
+
"kl": 0.008299827575683594,
|
120 |
+
"learning_rate": 9.997923381619255e-07,
|
121 |
+
"loss": 0.0,
|
122 |
+
"reward": 0.22395834000781178,
|
123 |
+
"reward_std": 0.37577595096081495,
|
124 |
+
"rewards/equation_reward_func": 0.0052083334885537624,
|
125 |
+
"rewards/format_reward_func": 0.21875000419095159,
|
126 |
+
"step": 18
|
127 |
+
},
|
128 |
+
{
|
129 |
+
"completion_length": 127.20573091506958,
|
130 |
+
"epoch": 0.010666666666666666,
|
131 |
+
"grad_norm": 0.5597326437314926,
|
132 |
+
"kl": 0.0244293212890625,
|
133 |
+
"learning_rate": 9.995328012945157e-07,
|
134 |
+
"loss": 0.0,
|
135 |
+
"reward": 0.4505208469927311,
|
136 |
+
"reward_std": 0.4992805514484644,
|
137 |
+
"rewards/equation_reward_func": 0.01822916720993817,
|
138 |
+
"rewards/format_reward_func": 0.4322916753590107,
|
139 |
+
"step": 20
|
140 |
+
},
|
141 |
+
{
|
142 |
+
"completion_length": 93.7682318687439,
|
143 |
+
"epoch": 0.011733333333333333,
|
144 |
+
"grad_norm": 0.5475672226425161,
|
145 |
+
"kl": 0.048309326171875,
|
146 |
+
"learning_rate": 9.991695251414583e-07,
|
147 |
+
"loss": 0.0,
|
148 |
+
"reward": 0.5755208488553762,
|
149 |
+
"reward_std": 0.4716507475823164,
|
150 |
+
"rewards/equation_reward_func": 0.007812500232830644,
|
151 |
+
"rewards/format_reward_func": 0.5677083469927311,
|
152 |
+
"step": 22
|
153 |
+
},
|
154 |
+
{
|
155 |
+
"completion_length": 84.74739789962769,
|
156 |
+
"epoch": 0.0128,
|
157 |
+
"grad_norm": 0.6354342945220236,
|
158 |
+
"kl": 0.0808868408203125,
|
159 |
+
"learning_rate": 9.987025851452636e-07,
|
160 |
+
"loss": 0.0001,
|
161 |
+
"reward": 0.7291666865348816,
|
162 |
+
"reward_std": 0.42415964510291815,
|
163 |
+
"rewards/equation_reward_func": 0.0052083334885537624,
|
164 |
+
"rewards/format_reward_func": 0.7239583507180214,
|
165 |
+
"step": 24
|
166 |
+
},
|
167 |
+
{
|
168 |
+
"completion_length": 82.8072943687439,
|
169 |
+
"epoch": 0.013866666666666666,
|
170 |
+
"grad_norm": 0.5155554110023303,
|
171 |
+
"kl": 0.128814697265625,
|
172 |
+
"learning_rate": 9.981320782765846e-07,
|
173 |
+
"loss": 0.0001,
|
174 |
+
"reward": 0.8750000223517418,
|
175 |
+
"reward_std": 0.270578539930284,
|
176 |
+
"rewards/equation_reward_func": 0.0026041667442768812,
|
177 |
+
"rewards/format_reward_func": 0.8723958544433117,
|
178 |
+
"step": 26
|
179 |
+
},
|
180 |
+
{
|
181 |
+
"completion_length": 64.10937762260437,
|
182 |
+
"epoch": 0.014933333333333333,
|
183 |
+
"grad_norm": 0.3480478612027264,
|
184 |
+
"kl": 0.24591064453125,
|
185 |
+
"learning_rate": 9.974581230140768e-07,
|
186 |
+
"loss": 0.0002,
|
187 |
+
"reward": 0.9713541902601719,
|
188 |
+
"reward_std": 0.12162131909281015,
|
189 |
+
"rewards/equation_reward_func": 0.007812500232830644,
|
190 |
+
"rewards/format_reward_func": 0.9635416939854622,
|
191 |
+
"step": 28
|
192 |
+
},
|
193 |
+
{
|
194 |
+
"completion_length": 60.281251668930054,
|
195 |
+
"epoch": 0.016,
|
196 |
+
"grad_norm": 0.005562791609333587,
|
197 |
+
"kl": 0.3465576171875,
|
198 |
+
"learning_rate": 9.966808593197956e-07,
|
199 |
+
"loss": 0.0003,
|
200 |
+
"reward": 0.9869791753590107,
|
201 |
+
"reward_std": 0.03682847833260894,
|
202 |
+
"rewards/equation_reward_func": 0.0,
|
203 |
+
"rewards/format_reward_func": 0.9869791753590107,
|
204 |
+
"step": 30
|
205 |
+
},
|
206 |
+
{
|
207 |
+
"completion_length": 45.51562637090683,
|
208 |
+
"epoch": 0.017066666666666667,
|
209 |
+
"grad_norm": 0.03097813949935321,
|
210 |
+
"kl": 0.49072265625,
|
211 |
+
"learning_rate": 9.958004486101293e-07,
|
212 |
+
"loss": 0.0005,
|
213 |
+
"reward": 0.9947916716337204,
|
214 |
+
"reward_std": 0.014731391333043575,
|
215 |
+
"rewards/equation_reward_func": 0.0,
|
216 |
+
"rewards/format_reward_func": 0.9947916716337204,
|
217 |
+
"step": 32
|
218 |
+
},
|
219 |
+
{
|
220 |
+
"completion_length": 69.03385561704636,
|
221 |
+
"epoch": 0.018133333333333335,
|
222 |
+
"grad_norm": 0.006598716445330455,
|
223 |
+
"kl": 0.3668212890625,
|
224 |
+
"learning_rate": 9.948170737222762e-07,
|
225 |
+
"loss": 0.0004,
|
226 |
+
"reward": 1.0,
|
227 |
+
"reward_std": 0.0,
|
228 |
+
"rewards/equation_reward_func": 0.0,
|
229 |
+
"rewards/format_reward_func": 1.0,
|
230 |
+
"step": 34
|
231 |
+
},
|
232 |
+
{
|
233 |
+
"completion_length": 98.88541954755783,
|
234 |
+
"epoch": 0.0192,
|
235 |
+
"grad_norm": 0.00733244130846419,
|
236 |
+
"kl": 0.3455810546875,
|
237 |
+
"learning_rate": 9.937309388762758e-07,
|
238 |
+
"loss": 0.0003,
|
239 |
+
"reward": 1.0,
|
240 |
+
"reward_std": 0.0,
|
241 |
+
"rewards/equation_reward_func": 0.0,
|
242 |
+
"rewards/format_reward_func": 1.0,
|
243 |
+
"step": 36
|
244 |
+
},
|
245 |
+
{
|
246 |
+
"completion_length": 79.19531428813934,
|
247 |
+
"epoch": 0.020266666666666665,
|
248 |
+
"grad_norm": 0.002140189477159276,
|
249 |
+
"kl": 0.337646484375,
|
250 |
+
"learning_rate": 9.925422696325974e-07,
|
251 |
+
"loss": 0.0003,
|
252 |
+
"reward": 0.9973958358168602,
|
253 |
+
"reward_std": 0.007365695666521788,
|
254 |
+
"rewards/equation_reward_func": 0.0,
|
255 |
+
"rewards/format_reward_func": 0.9973958358168602,
|
256 |
+
"step": 38
|
257 |
+
},
|
258 |
+
{
|
259 |
+
"completion_length": 58.98437696695328,
|
260 |
+
"epoch": 0.021333333333333333,
|
261 |
+
"grad_norm": 0.005041926134939414,
|
262 |
+
"kl": 0.3271484375,
|
263 |
+
"learning_rate": 9.912513128452973e-07,
|
264 |
+
"loss": 0.0003,
|
265 |
+
"reward": 1.0,
|
266 |
+
"reward_std": 0.0,
|
267 |
+
"rewards/equation_reward_func": 0.0,
|
268 |
+
"rewards/format_reward_func": 1.0,
|
269 |
+
"step": 40
|
270 |
+
},
|
271 |
+
{
|
272 |
+
"completion_length": 83.58854389190674,
|
273 |
+
"epoch": 0.0224,
|
274 |
+
"grad_norm": 0.003080339075344411,
|
275 |
+
"kl": 0.3336181640625,
|
276 |
+
"learning_rate": 9.898583366107536e-07,
|
277 |
+
"loss": 0.0003,
|
278 |
+
"reward": 1.0,
|
279 |
+
"reward_std": 0.0,
|
280 |
+
"rewards/equation_reward_func": 0.0,
|
281 |
+
"rewards/format_reward_func": 1.0,
|
282 |
+
"step": 42
|
283 |
+
},
|
284 |
+
{
|
285 |
+
"completion_length": 68.85677361488342,
|
286 |
+
"epoch": 0.023466666666666667,
|
287 |
+
"grad_norm": 0.005847596515205166,
|
288 |
+
"kl": 0.355712890625,
|
289 |
+
"learning_rate": 9.88363630211991e-07,
|
290 |
+
"loss": 0.0004,
|
291 |
+
"reward": 1.0,
|
292 |
+
"reward_std": 0.0,
|
293 |
+
"rewards/equation_reward_func": 0.0,
|
294 |
+
"rewards/format_reward_func": 1.0,
|
295 |
+
"step": 44
|
296 |
+
},
|
297 |
+
{
|
298 |
+
"completion_length": 81.716148853302,
|
299 |
+
"epoch": 0.024533333333333334,
|
300 |
+
"grad_norm": 0.006129286662886568,
|
301 |
+
"kl": 0.351806640625,
|
302 |
+
"learning_rate": 9.867675040586033e-07,
|
303 |
+
"loss": 0.0004,
|
304 |
+
"reward": 1.0,
|
305 |
+
"reward_std": 0.0,
|
306 |
+
"rewards/equation_reward_func": 0.0,
|
307 |
+
"rewards/format_reward_func": 1.0,
|
308 |
+
"step": 46
|
309 |
+
},
|
310 |
+
{
|
311 |
+
"completion_length": 62.87239807844162,
|
312 |
+
"epoch": 0.0256,
|
313 |
+
"grad_norm": 0.0022686471037775217,
|
314 |
+
"kl": 0.3529052734375,
|
315 |
+
"learning_rate": 9.850702896222908e-07,
|
316 |
+
"loss": 0.0004,
|
317 |
+
"reward": 1.0,
|
318 |
+
"reward_std": 0.0,
|
319 |
+
"rewards/equation_reward_func": 0.0,
|
320 |
+
"rewards/format_reward_func": 1.0,
|
321 |
+
"step": 48
|
322 |
+
},
|
323 |
+
{
|
324 |
+
"completion_length": 84.13802230358124,
|
325 |
+
"epoch": 0.02666666666666667,
|
326 |
+
"grad_norm": 0.001575588022391806,
|
327 |
+
"kl": 0.3443603515625,
|
328 |
+
"learning_rate": 9.83272339368022e-07,
|
329 |
+
"loss": 0.0003,
|
330 |
+
"reward": 1.0,
|
331 |
+
"reward_std": 0.0,
|
332 |
+
"rewards/equation_reward_func": 0.0,
|
333 |
+
"rewards/format_reward_func": 1.0,
|
334 |
+
"step": 50
|
335 |
+
},
|
336 |
+
{
|
337 |
+
"completion_length": 70.85937684774399,
|
338 |
+
"epoch": 0.027733333333333332,
|
339 |
+
"grad_norm": 0.004893372014791935,
|
340 |
+
"kl": 0.3424072265625,
|
341 |
+
"learning_rate": 9.813740266808373e-07,
|
342 |
+
"loss": 0.0003,
|
343 |
+
"reward": 1.0,
|
344 |
+
"reward_std": 0.0,
|
345 |
+
"rewards/equation_reward_func": 0.0,
|
346 |
+
"rewards/format_reward_func": 1.0,
|
347 |
+
"step": 52
|
348 |
+
},
|
349 |
+
{
|
350 |
+
"completion_length": 73.53125238418579,
|
351 |
+
"epoch": 0.0288,
|
352 |
+
"grad_norm": 0.0020037829167036995,
|
353 |
+
"kl": 0.3336181640625,
|
354 |
+
"learning_rate": 9.793757457883061e-07,
|
355 |
+
"loss": 0.0003,
|
356 |
+
"reward": 1.0,
|
357 |
+
"reward_std": 0.0,
|
358 |
+
"rewards/equation_reward_func": 0.0,
|
359 |
+
"rewards/format_reward_func": 1.0,
|
360 |
+
"step": 54
|
361 |
+
},
|
362 |
+
{
|
363 |
+
"completion_length": 85.58073115348816,
|
364 |
+
"epoch": 0.029866666666666666,
|
365 |
+
"grad_norm": 0.0052068637869011935,
|
366 |
+
"kl": 0.3441162109375,
|
367 |
+
"learning_rate": 9.772779116786567e-07,
|
368 |
+
"loss": 0.0003,
|
369 |
+
"reward": 1.0,
|
370 |
+
"reward_std": 0.0,
|
371 |
+
"rewards/equation_reward_func": 0.0,
|
372 |
+
"rewards/format_reward_func": 1.0,
|
373 |
+
"step": 56
|
374 |
+
},
|
375 |
+
{
|
376 |
+
"completion_length": 62.17968964576721,
|
377 |
+
"epoch": 0.030933333333333334,
|
378 |
+
"grad_norm": 0.004204176702325925,
|
379 |
+
"kl": 0.3392333984375,
|
380 |
+
"learning_rate": 9.750809600145952e-07,
|
381 |
+
"loss": 0.0003,
|
382 |
+
"reward": 1.0,
|
383 |
+
"reward_std": 0.0,
|
384 |
+
"rewards/equation_reward_func": 0.0,
|
385 |
+
"rewards/format_reward_func": 1.0,
|
386 |
+
"step": 58
|
387 |
+
},
|
388 |
+
{
|
389 |
+
"completion_length": 60.56250220537186,
|
390 |
+
"epoch": 0.032,
|
391 |
+
"grad_norm": 0.0015647291182938304,
|
392 |
+
"kl": 0.35205078125,
|
393 |
+
"learning_rate": 9.7278534704283e-07,
|
394 |
+
"loss": 0.0004,
|
395 |
+
"reward": 1.0,
|
396 |
+
"reward_std": 0.0,
|
397 |
+
"rewards/equation_reward_func": 0.0,
|
398 |
+
"rewards/format_reward_func": 1.0,
|
399 |
+
"step": 60
|
400 |
+
},
|
401 |
+
{
|
402 |
+
"completion_length": 63.45312720537186,
|
403 |
+
"epoch": 0.03306666666666667,
|
404 |
+
"grad_norm": 0.017107550850573614,
|
405 |
+
"kl": 0.3740234375,
|
406 |
+
"learning_rate": 9.703915494993213e-07,
|
407 |
+
"loss": 0.0004,
|
408 |
+
"reward": 1.0,
|
409 |
+
"reward_std": 0.0,
|
410 |
+
"rewards/equation_reward_func": 0.0,
|
411 |
+
"rewards/format_reward_func": 1.0,
|
412 |
+
"step": 62
|
413 |
+
},
|
414 |
+
{
|
415 |
+
"completion_length": 59.20312708616257,
|
416 |
+
"epoch": 0.034133333333333335,
|
417 |
+
"grad_norm": 0.002029246366701105,
|
418 |
+
"kl": 0.344482421875,
|
419 |
+
"learning_rate": 9.67900064510277e-07,
|
420 |
+
"loss": 0.0003,
|
421 |
+
"reward": 1.0,
|
422 |
+
"reward_std": 0.0,
|
423 |
+
"rewards/equation_reward_func": 0.0,
|
424 |
+
"rewards/format_reward_func": 1.0,
|
425 |
+
"step": 64
|
426 |
+
},
|
427 |
+
{
|
428 |
+
"completion_length": 49.76041799783707,
|
429 |
+
"epoch": 0.0352,
|
430 |
+
"grad_norm": 0.1707108937849788,
|
431 |
+
"kl": 0.3961181640625,
|
432 |
+
"learning_rate": 9.653114094889126e-07,
|
433 |
+
"loss": 0.0004,
|
434 |
+
"reward": 0.9973958358168602,
|
435 |
+
"reward_std": 0.007365695666521788,
|
436 |
+
"rewards/equation_reward_func": 0.0,
|
437 |
+
"rewards/format_reward_func": 0.9973958358168602,
|
438 |
+
"step": 66
|
439 |
+
},
|
440 |
+
{
|
441 |
+
"completion_length": 66.42448157072067,
|
442 |
+
"epoch": 0.03626666666666667,
|
443 |
+
"grad_norm": 0.004363766057327376,
|
444 |
+
"kl": 0.3525390625,
|
445 |
+
"learning_rate": 9.626261220279987e-07,
|
446 |
+
"loss": 0.0004,
|
447 |
+
"reward": 1.0,
|
448 |
+
"reward_std": 0.0,
|
449 |
+
"rewards/equation_reward_func": 0.0,
|
450 |
+
"rewards/format_reward_func": 1.0,
|
451 |
+
"step": 68
|
452 |
+
},
|
453 |
+
{
|
454 |
+
"completion_length": 79.07031440734863,
|
455 |
+
"epoch": 0.037333333333333336,
|
456 |
+
"grad_norm": 0.002295566859094707,
|
457 |
+
"kl": 0.3387451171875,
|
458 |
+
"learning_rate": 9.598447597882179e-07,
|
459 |
+
"loss": 0.0003,
|
460 |
+
"reward": 1.0,
|
461 |
+
"reward_std": 0.0,
|
462 |
+
"rewards/equation_reward_func": 0.0,
|
463 |
+
"rewards/format_reward_func": 1.0,
|
464 |
+
"step": 70
|
465 |
+
},
|
466 |
+
{
|
467 |
+
"completion_length": 85.9947943687439,
|
468 |
+
"epoch": 0.0384,
|
469 |
+
"grad_norm": 0.0028772515347710507,
|
470 |
+
"kl": 0.3404541015625,
|
471 |
+
"learning_rate": 9.56967900382354e-07,
|
472 |
+
"loss": 0.0003,
|
473 |
+
"reward": 1.0,
|
474 |
+
"reward_std": 0.0,
|
475 |
+
"rewards/equation_reward_func": 0.0,
|
476 |
+
"rewards/format_reward_func": 1.0,
|
477 |
+
"step": 72
|
478 |
+
},
|
479 |
+
{
|
480 |
+
"completion_length": 118.54166984558105,
|
481 |
+
"epoch": 0.039466666666666664,
|
482 |
+
"grad_norm": 0.003804107622681421,
|
483 |
+
"kl": 0.35693359375,
|
484 |
+
"learning_rate": 9.539961412553374e-07,
|
485 |
+
"loss": 0.0004,
|
486 |
+
"reward": 1.0,
|
487 |
+
"reward_std": 0.0,
|
488 |
+
"rewards/equation_reward_func": 0.0,
|
489 |
+
"rewards/format_reward_func": 1.0,
|
490 |
+
"step": 74
|
491 |
+
},
|
492 |
+
{
|
493 |
+
"completion_length": 132.24739825725555,
|
494 |
+
"epoch": 0.04053333333333333,
|
495 |
+
"grad_norm": 0.0026976286800890377,
|
496 |
+
"kl": 0.35357666015625,
|
497 |
+
"learning_rate": 9.509300995601719e-07,
|
498 |
+
"loss": 0.0004,
|
499 |
+
"reward": 1.0,
|
500 |
+
"reward_std": 0.0,
|
501 |
+
"rewards/equation_reward_func": 0.0,
|
502 |
+
"rewards/format_reward_func": 1.0,
|
503 |
+
"step": 76
|
504 |
+
},
|
505 |
+
{
|
506 |
+
"completion_length": 150.5286495089531,
|
507 |
+
"epoch": 0.0416,
|
508 |
+
"grad_norm": 0.0029703461859595446,
|
509 |
+
"kl": 0.3365478515625,
|
510 |
+
"learning_rate": 9.477704120297696e-07,
|
511 |
+
"loss": 0.0003,
|
512 |
+
"reward": 1.0,
|
513 |
+
"reward_std": 0.0,
|
514 |
+
"rewards/equation_reward_func": 0.0,
|
515 |
+
"rewards/format_reward_func": 1.0,
|
516 |
+
"step": 78
|
517 |
+
},
|
518 |
+
{
|
519 |
+
"completion_length": 132.16927361488342,
|
520 |
+
"epoch": 0.042666666666666665,
|
521 |
+
"grad_norm": 0.0042900161521961236,
|
522 |
+
"kl": 0.347900390625,
|
523 |
+
"learning_rate": 9.445177348447186e-07,
|
524 |
+
"loss": 0.0003,
|
525 |
+
"reward": 1.0,
|
526 |
+
"reward_std": 0.0,
|
527 |
+
"rewards/equation_reward_func": 0.0,
|
528 |
+
"rewards/format_reward_func": 1.0,
|
529 |
+
"step": 80
|
530 |
+
},
|
531 |
+
{
|
532 |
+
"completion_length": 148.73958611488342,
|
533 |
+
"epoch": 0.04373333333333333,
|
534 |
+
"grad_norm": 0.009973192234001046,
|
535 |
+
"kl": 0.3470458984375,
|
536 |
+
"learning_rate": 9.41172743497012e-07,
|
537 |
+
"loss": 0.0003,
|
538 |
+
"reward": 0.9973958358168602,
|
539 |
+
"reward_std": 0.007365695666521788,
|
540 |
+
"rewards/equation_reward_func": 0.0,
|
541 |
+
"rewards/format_reward_func": 0.9973958358168602,
|
542 |
+
"step": 82
|
543 |
+
},
|
544 |
+
{
|
545 |
+
"completion_length": 160.5599009990692,
|
546 |
+
"epoch": 0.0448,
|
547 |
+
"grad_norm": 0.021317337320502894,
|
548 |
+
"kl": 0.34527587890625,
|
549 |
+
"learning_rate": 9.377361326497673e-07,
|
550 |
+
"loss": 0.0003,
|
551 |
+
"reward": 1.0,
|
552 |
+
"reward_std": 0.0,
|
553 |
+
"rewards/equation_reward_func": 0.0,
|
554 |
+
"rewards/format_reward_func": 1.0,
|
555 |
+
"step": 84
|
556 |
+
},
|
557 |
+
{
|
558 |
+
"completion_length": 214.65365314483643,
|
559 |
+
"epoch": 0.04586666666666667,
|
560 |
+
"grad_norm": 0.004309834843107017,
|
561 |
+
"kl": 0.30181884765625,
|
562 |
+
"learning_rate": 9.342086159929629e-07,
|
563 |
+
"loss": 0.0003,
|
564 |
+
"reward": 1.0,
|
565 |
+
"reward_std": 0.0,
|
566 |
+
"rewards/equation_reward_func": 0.0,
|
567 |
+
"rewards/format_reward_func": 1.0,
|
568 |
+
"step": 86
|
569 |
+
},
|
570 |
+
{
|
571 |
+
"completion_length": 297.28125953674316,
|
572 |
+
"epoch": 0.046933333333333334,
|
573 |
+
"grad_norm": 0.004971116117055498,
|
574 |
+
"kl": 0.263671875,
|
575 |
+
"learning_rate": 9.305909260952254e-07,
|
576 |
+
"loss": 0.0003,
|
577 |
+
"reward": 1.0,
|
578 |
+
"reward_std": 0.0,
|
579 |
+
"rewards/equation_reward_func": 0.0,
|
580 |
+
"rewards/format_reward_func": 1.0,
|
581 |
+
"step": 88
|
582 |
+
},
|
583 |
+
{
|
584 |
+
"completion_length": 306.1666736602783,
|
585 |
+
"epoch": 0.048,
|
586 |
+
"grad_norm": 0.00330346016739013,
|
587 |
+
"kl": 0.24566650390625,
|
588 |
+
"learning_rate": 9.268838142516943e-07,
|
589 |
+
"loss": 0.0002,
|
590 |
+
"reward": 1.0,
|
591 |
+
"reward_std": 0.0,
|
592 |
+
"rewards/equation_reward_func": 0.0,
|
593 |
+
"rewards/format_reward_func": 1.0,
|
594 |
+
"step": 90
|
595 |
+
},
|
596 |
+
{
|
597 |
+
"completion_length": 279.96355056762695,
|
598 |
+
"epoch": 0.04906666666666667,
|
599 |
+
"grad_norm": 0.00318035450007201,
|
600 |
+
"kl": 0.2532958984375,
|
601 |
+
"learning_rate": 9.23088050327999e-07,
|
602 |
+
"loss": 0.0003,
|
603 |
+
"reward": 1.0,
|
604 |
+
"reward_std": 0.0,
|
605 |
+
"rewards/equation_reward_func": 0.0,
|
606 |
+
"rewards/format_reward_func": 1.0,
|
607 |
+
"step": 92
|
608 |
+
},
|
609 |
+
{
|
610 |
+
"completion_length": 261.7994842529297,
|
611 |
+
"epoch": 0.050133333333333335,
|
612 |
+
"grad_norm": 0.0036946086220320164,
|
613 |
+
"kl": 0.273681640625,
|
614 |
+
"learning_rate": 9.192044226003788e-07,
|
615 |
+
"loss": 0.0003,
|
616 |
+
"reward": 1.0,
|
617 |
+
"reward_std": 0.0,
|
618 |
+
"rewards/equation_reward_func": 0.0,
|
619 |
+
"rewards/format_reward_func": 1.0,
|
620 |
+
"step": 94
|
621 |
+
},
|
622 |
+
{
|
623 |
+
"completion_length": 275.30209159851074,
|
624 |
+
"epoch": 0.0512,
|
625 |
+
"grad_norm": 0.004650714378941982,
|
626 |
+
"kl": 0.27423095703125,
|
627 |
+
"learning_rate": 9.15233737591979e-07,
|
628 |
+
"loss": 0.0003,
|
629 |
+
"reward": 1.0,
|
630 |
+
"reward_std": 0.0,
|
631 |
+
"rewards/equation_reward_func": 0.0,
|
632 |
+
"rewards/format_reward_func": 1.0,
|
633 |
+
"step": 96
|
634 |
+
},
|
635 |
+
{
|
636 |
+
"completion_length": 275.5442762374878,
|
637 |
+
"epoch": 0.05226666666666667,
|
638 |
+
"grad_norm": 0.005874752003273854,
|
639 |
+
"kl": 0.283935546875,
|
640 |
+
"learning_rate": 9.111768199053586e-07,
|
641 |
+
"loss": 0.0003,
|
642 |
+
"reward": 1.0,
|
643 |
+
"reward_std": 0.0,
|
644 |
+
"rewards/equation_reward_func": 0.0,
|
645 |
+
"rewards/format_reward_func": 1.0,
|
646 |
+
"step": 98
|
647 |
+
},
|
648 |
+
{
|
649 |
+
"completion_length": 224.13542079925537,
|
650 |
+
"epoch": 0.05333333333333334,
|
651 |
+
"grad_norm": 0.003767361371489657,
|
652 |
+
"kl": 0.29339599609375,
|
653 |
+
"learning_rate": 9.070345120512435e-07,
|
654 |
+
"loss": 0.0003,
|
655 |
+
"reward": 1.0,
|
656 |
+
"reward_std": 0.0,
|
657 |
+
"rewards/equation_reward_func": 0.0,
|
658 |
+
"rewards/format_reward_func": 1.0,
|
659 |
+
"step": 100
|
660 |
+
},
|
661 |
+
{
|
662 |
+
"completion_length": 247.3671932220459,
|
663 |
+
"epoch": 0.0544,
|
664 |
+
"grad_norm": 0.21204929441134815,
|
665 |
+
"kl": 0.5673828125,
|
666 |
+
"learning_rate": 9.028076742735582e-07,
|
667 |
+
"loss": 0.0006,
|
668 |
+
"reward": 1.0,
|
669 |
+
"reward_std": 0.0,
|
670 |
+
"rewards/equation_reward_func": 0.0,
|
671 |
+
"rewards/format_reward_func": 1.0,
|
672 |
+
"step": 102
|
673 |
+
},
|
674 |
+
{
|
675 |
+
"completion_length": 213.47917222976685,
|
676 |
+
"epoch": 0.055466666666666664,
|
677 |
+
"grad_norm": 0.003470673455225982,
|
678 |
+
"kl": 0.3101806640625,
|
679 |
+
"learning_rate": 8.984971843707787e-07,
|
680 |
+
"loss": 0.0003,
|
681 |
+
"reward": 1.0,
|
682 |
+
"reward_std": 0.0,
|
683 |
+
"rewards/equation_reward_func": 0.0,
|
684 |
+
"rewards/format_reward_func": 1.0,
|
685 |
+
"step": 104
|
686 |
+
},
|
687 |
+
{
|
688 |
+
"completion_length": 175.9947967529297,
|
689 |
+
"epoch": 0.05653333333333333,
|
690 |
+
"grad_norm": 0.005812568326490043,
|
691 |
+
"kl": 0.32379150390625,
|
692 |
+
"learning_rate": 8.94103937513637e-07,
|
693 |
+
"loss": 0.0003,
|
694 |
+
"reward": 1.0,
|
695 |
+
"reward_std": 0.0,
|
696 |
+
"rewards/equation_reward_func": 0.0,
|
697 |
+
"rewards/format_reward_func": 1.0,
|
698 |
+
"step": 106
|
699 |
+
},
|
700 |
+
{
|
701 |
+
"completion_length": 117.411461353302,
|
702 |
+
"epoch": 0.0576,
|
703 |
+
"grad_norm": 0.00354722170703675,
|
704 |
+
"kl": 0.3551025390625,
|
705 |
+
"learning_rate": 8.896288460592185e-07,
|
706 |
+
"loss": 0.0004,
|
707 |
+
"reward": 1.0,
|
708 |
+
"reward_std": 0.0,
|
709 |
+
"rewards/equation_reward_func": 0.0,
|
710 |
+
"rewards/format_reward_func": 1.0,
|
711 |
+
"step": 108
|
712 |
+
},
|
713 |
+
{
|
714 |
+
"completion_length": 110.28125357627869,
|
715 |
+
"epoch": 0.058666666666666666,
|
716 |
+
"grad_norm": 0.003013321323384688,
|
717 |
+
"kl": 0.339599609375,
|
718 |
+
"learning_rate": 8.850728393614901e-07,
|
719 |
+
"loss": 0.0003,
|
720 |
+
"reward": 1.0,
|
721 |
+
"reward_std": 0.0,
|
722 |
+
"rewards/equation_reward_func": 0.0,
|
723 |
+
"rewards/format_reward_func": 1.0,
|
724 |
+
"step": 110
|
725 |
+
},
|
726 |
+
{
|
727 |
+
"completion_length": 106.96875274181366,
|
728 |
+
"epoch": 0.05973333333333333,
|
729 |
+
"grad_norm": 0.003463116039679215,
|
730 |
+
"kl": 0.35595703125,
|
731 |
+
"learning_rate": 8.804368635783002e-07,
|
732 |
+
"loss": 0.0004,
|
733 |
+
"reward": 1.0,
|
734 |
+
"reward_std": 0.0,
|
735 |
+
"rewards/equation_reward_func": 0.0,
|
736 |
+
"rewards/format_reward_func": 1.0,
|
737 |
+
"step": 112
|
738 |
+
},
|
739 |
+
{
|
740 |
+
"completion_length": 85.82552325725555,
|
741 |
+
"epoch": 0.0608,
|
742 |
+
"grad_norm": 0.03677716489910903,
|
743 |
+
"kl": 0.3817138671875,
|
744 |
+
"learning_rate": 8.75721881474886e-07,
|
745 |
+
"loss": 0.0004,
|
746 |
+
"reward": 0.9973958358168602,
|
747 |
+
"reward_std": 0.007365695666521788,
|
748 |
+
"rewards/equation_reward_func": 0.0,
|
749 |
+
"rewards/format_reward_func": 0.9973958358168602,
|
750 |
+
"step": 114
|
751 |
+
},
|
752 |
+
{
|
753 |
+
"completion_length": 69.90885663032532,
|
754 |
+
"epoch": 0.06186666666666667,
|
755 |
+
"grad_norm": 0.014502649071450845,
|
756 |
+
"kl": 0.4462890625,
|
757 |
+
"learning_rate": 8.709288722239342e-07,
|
758 |
+
"loss": 0.0004,
|
759 |
+
"reward": 1.0,
|
760 |
+
"reward_std": 0.0,
|
761 |
+
"rewards/equation_reward_func": 0.0,
|
762 |
+
"rewards/format_reward_func": 1.0,
|
763 |
+
"step": 116
|
764 |
+
},
|
765 |
+
{
|
766 |
+
"completion_length": 60.21093875169754,
|
767 |
+
"epoch": 0.06293333333333333,
|
768 |
+
"grad_norm": 0.018319766426722457,
|
769 |
+
"kl": 0.4246826171875,
|
770 |
+
"learning_rate": 8.660588312022343e-07,
|
771 |
+
"loss": 0.0004,
|
772 |
+
"reward": 0.9973958358168602,
|
773 |
+
"reward_std": 0.007365695666521788,
|
774 |
+
"rewards/equation_reward_func": 0.0,
|
775 |
+
"rewards/format_reward_func": 0.9973958358168602,
|
776 |
+
"step": 118
|
777 |
+
},
|
778 |
+
{
|
779 |
+
"completion_length": 48.75000184774399,
|
780 |
+
"epoch": 0.064,
|
781 |
+
"grad_norm": 0.002819178233147015,
|
782 |
+
"kl": 0.3572998046875,
|
783 |
+
"learning_rate": 8.611127697839647e-07,
|
784 |
+
"loss": 0.0004,
|
785 |
+
"reward": 0.9973958358168602,
|
786 |
+
"reward_std": 0.007365695666521788,
|
787 |
+
"rewards/equation_reward_func": 0.0,
|
788 |
+
"rewards/format_reward_func": 0.9973958358168602,
|
789 |
+
"step": 120
|
790 |
+
},
|
791 |
+
{
|
792 |
+
"completion_length": 29.817708730697632,
|
793 |
+
"epoch": 0.06506666666666666,
|
794 |
+
"grad_norm": 0.048219241978314446,
|
795 |
+
"kl": 0.6165771484375,
|
796 |
+
"learning_rate": 8.560917151306592e-07,
|
797 |
+
"loss": 0.0006,
|
798 |
+
"reward": 1.0,
|
799 |
+
"reward_std": 0.0,
|
800 |
+
"rewards/equation_reward_func": 0.0,
|
801 |
+
"rewards/format_reward_func": 1.0,
|
802 |
+
"step": 122
|
803 |
+
},
|
804 |
+
{
|
805 |
+
"completion_length": 29.747396767139435,
|
806 |
+
"epoch": 0.06613333333333334,
|
807 |
+
"grad_norm": 0.002491973715723316,
|
808 |
+
"kl": 0.394287109375,
|
809 |
+
"learning_rate": 8.509967099778933e-07,
|
810 |
+
"loss": 0.0004,
|
811 |
+
"reward": 0.9973958358168602,
|
812 |
+
"reward_std": 0.007365695666521788,
|
813 |
+
"rewards/equation_reward_func": 0.0,
|
814 |
+
"rewards/format_reward_func": 0.9973958358168602,
|
815 |
+
"step": 124
|
816 |
+
},
|
817 |
+
{
|
818 |
+
"completion_length": 22.74479252099991,
|
819 |
+
"epoch": 0.0672,
|
820 |
+
"grad_norm": 0.03159552463178033,
|
821 |
+
"kl": 0.519287109375,
|
822 |
+
"learning_rate": 8.458288124187358e-07,
|
823 |
+
"loss": 0.0005,
|
824 |
+
"reward": 1.0,
|
825 |
+
"reward_std": 0.0,
|
826 |
+
"rewards/equation_reward_func": 0.0,
|
827 |
+
"rewards/format_reward_func": 1.0,
|
828 |
+
"step": 126
|
829 |
+
},
|
830 |
+
{
|
831 |
+
"completion_length": 18.752604603767395,
|
832 |
+
"epoch": 0.06826666666666667,
|
833 |
+
"grad_norm": 0.0047626328583877,
|
834 |
+
"kl": 0.4564208984375,
|
835 |
+
"learning_rate": 8.405890956840135e-07,
|
836 |
+
"loss": 0.0005,
|
837 |
+
"reward": 0.9973958358168602,
|
838 |
+
"reward_std": 0.007365695666521788,
|
839 |
+
"rewards/equation_reward_func": 0.0,
|
840 |
+
"rewards/format_reward_func": 0.9973958358168602,
|
841 |
+
"step": 128
|
842 |
+
},
|
843 |
+
{
|
844 |
+
"completion_length": 25.395833671092987,
|
845 |
+
"epoch": 0.06933333333333333,
|
846 |
+
"grad_norm": 0.007120551314141992,
|
847 |
+
"kl": 0.4727783203125,
|
848 |
+
"learning_rate": 8.352786479194287e-07,
|
849 |
+
"loss": 0.0005,
|
850 |
+
"reward": 1.0,
|
851 |
+
"reward_std": 0.0,
|
852 |
+
"rewards/equation_reward_func": 0.0,
|
853 |
+
"rewards/format_reward_func": 1.0,
|
854 |
+
"step": 130
|
855 |
+
},
|
856 |
+
{
|
857 |
+
"completion_length": 18.677083611488342,
|
858 |
+
"epoch": 0.0704,
|
859 |
+
"grad_norm": 0.007749349171876843,
|
860 |
+
"kl": 0.4617919921875,
|
861 |
+
"learning_rate": 8.298985719595823e-07,
|
862 |
+
"loss": 0.0005,
|
863 |
+
"reward": 1.0,
|
864 |
+
"reward_std": 0.0,
|
865 |
+
"rewards/equation_reward_func": 0.0,
|
866 |
+
"rewards/format_reward_func": 1.0,
|
867 |
+
"step": 132
|
868 |
+
},
|
869 |
+
{
|
870 |
+
"completion_length": 28.72395944595337,
|
871 |
+
"epoch": 0.07146666666666666,
|
872 |
+
"grad_norm": 0.01725236239408364,
|
873 |
+
"kl": 0.512451171875,
|
874 |
+
"learning_rate": 8.244499850989451e-07,
|
875 |
+
"loss": 0.0005,
|
876 |
+
"reward": 1.0,
|
877 |
+
"reward_std": 0.0,
|
878 |
+
"rewards/equation_reward_func": 0.0,
|
879 |
+
"rewards/format_reward_func": 1.0,
|
880 |
+
"step": 134
|
881 |
+
},
|
882 |
+
{
|
883 |
+
"completion_length": 32.2265630364418,
|
884 |
+
"epoch": 0.07253333333333334,
|
885 |
+
"grad_norm": 0.05304546123188986,
|
886 |
+
"kl": 0.5926513671875,
|
887 |
+
"learning_rate": 8.189340188598262e-07,
|
888 |
+
"loss": 0.0006,
|
889 |
+
"reward": 0.9973958358168602,
|
890 |
+
"reward_std": 0.007365695666521788,
|
891 |
+
"rewards/equation_reward_func": 0.0,
|
892 |
+
"rewards/format_reward_func": 0.9973958358168602,
|
893 |
+
"step": 136
|
894 |
+
},
|
895 |
+
{
|
896 |
+
"completion_length": 23.41145896911621,
|
897 |
+
"epoch": 0.0736,
|
898 |
+
"grad_norm": 0.013190548453262672,
|
899 |
+
"kl": 0.4632568359375,
|
900 |
+
"learning_rate": 8.133518187573862e-07,
|
901 |
+
"loss": 0.0005,
|
902 |
+
"reward": 1.0,
|
903 |
+
"reward_std": 0.0,
|
904 |
+
"rewards/equation_reward_func": 0.0,
|
905 |
+
"rewards/format_reward_func": 1.0,
|
906 |
+
"step": 138
|
907 |
+
},
|
908 |
+
{
|
909 |
+
"completion_length": 24.82552134990692,
|
910 |
+
"epoch": 0.07466666666666667,
|
911 |
+
"grad_norm": 0.012046997929078053,
|
912 |
+
"kl": 0.4591064453125,
|
913 |
+
"learning_rate": 8.077045440617464e-07,
|
914 |
+
"loss": 0.0005,
|
915 |
+
"reward": 1.0,
|
916 |
+
"reward_std": 0.0,
|
917 |
+
"rewards/equation_reward_func": 0.0,
|
918 |
+
"rewards/format_reward_func": 1.0,
|
919 |
+
"step": 140
|
920 |
+
},
|
921 |
+
{
|
922 |
+
"completion_length": 17.638021290302277,
|
923 |
+
"epoch": 0.07573333333333333,
|
924 |
+
"grad_norm": 0.0070439803543669265,
|
925 |
+
"kl": 0.425048828125,
|
926 |
+
"learning_rate": 8.019933675572388e-07,
|
927 |
+
"loss": 0.0004,
|
928 |
+
"reward": 1.0,
|
929 |
+
"reward_std": 0.0,
|
930 |
+
"rewards/equation_reward_func": 0.0,
|
931 |
+
"rewards/format_reward_func": 1.0,
|
932 |
+
"step": 142
|
933 |
+
},
|
934 |
+
{
|
935 |
+
"completion_length": 19.304688096046448,
|
936 |
+
"epoch": 0.0768,
|
937 |
+
"grad_norm": 0.007119537656182656,
|
938 |
+
"kl": 0.952880859375,
|
939 |
+
"learning_rate": 7.962194752988518e-07,
|
940 |
+
"loss": 0.001,
|
941 |
+
"reward": 0.9973958358168602,
|
942 |
+
"reward_std": 0.007365695666521788,
|
943 |
+
"rewards/equation_reward_func": 0.0,
|
944 |
+
"rewards/format_reward_func": 0.9973958358168602,
|
945 |
+
"step": 144
|
946 |
+
},
|
947 |
+
{
|
948 |
+
"completion_length": 23.434896171092987,
|
949 |
+
"epoch": 0.07786666666666667,
|
950 |
+
"grad_norm": 0.004351846417110043,
|
951 |
+
"kl": 0.39892578125,
|
952 |
+
"learning_rate": 7.903840663659184e-07,
|
953 |
+
"loss": 0.0004,
|
954 |
+
"reward": 1.0,
|
955 |
+
"reward_std": 0.0,
|
956 |
+
"rewards/equation_reward_func": 0.0,
|
957 |
+
"rewards/format_reward_func": 1.0,
|
958 |
+
"step": 146
|
959 |
+
},
|
960 |
+
{
|
961 |
+
"completion_length": 17.36458384990692,
|
962 |
+
"epoch": 0.07893333333333333,
|
963 |
+
"grad_norm": 0.014464883726819155,
|
964 |
+
"kl": 0.427490234375,
|
965 |
+
"learning_rate": 7.844883526131013e-07,
|
966 |
+
"loss": 0.0004,
|
967 |
+
"reward": 1.0,
|
968 |
+
"reward_std": 0.0,
|
969 |
+
"rewards/equation_reward_func": 0.0,
|
970 |
+
"rewards/format_reward_func": 1.0,
|
971 |
+
"step": 148
|
972 |
+
},
|
973 |
+
{
|
974 |
+
"completion_length": 23.164062976837158,
|
975 |
+
"epoch": 0.08,
|
976 |
+
"grad_norm": 0.003214313828585045,
|
977 |
+
"kl": 0.38671875,
|
978 |
+
"learning_rate": 7.785335584187219e-07,
|
979 |
+
"loss": 0.0004,
|
980 |
+
"reward": 1.0,
|
981 |
+
"reward_std": 0.0,
|
982 |
+
"rewards/equation_reward_func": 0.0,
|
983 |
+
"rewards/format_reward_func": 1.0,
|
984 |
+
"step": 150
|
985 |
+
},
|
986 |
+
{
|
987 |
+
"completion_length": 17.333333790302277,
|
988 |
+
"epoch": 0.08106666666666666,
|
989 |
+
"grad_norm": 0.005708191232659279,
|
990 |
+
"kl": 0.44482421875,
|
991 |
+
"learning_rate": 7.725209204304928e-07,
|
992 |
+
"loss": 0.0004,
|
993 |
+
"reward": 0.9973958358168602,
|
994 |
+
"reward_std": 0.007365695666521788,
|
995 |
+
"rewards/equation_reward_func": 0.0,
|
996 |
+
"rewards/format_reward_func": 0.9973958358168602,
|
997 |
+
"step": 152
|
998 |
+
},
|
999 |
+
{
|
1000 |
+
"completion_length": 18.481771171092987,
|
1001 |
+
"epoch": 0.08213333333333334,
|
1002 |
+
"grad_norm": 0.18097704136374604,
|
1003 |
+
"kl": 0.6190185546875,
|
1004 |
+
"learning_rate": 7.664516873086987e-07,
|
1005 |
+
"loss": 0.0006,
|
1006 |
+
"reward": 0.9947916716337204,
|
1007 |
+
"reward_std": 0.014731391333043575,
|
1008 |
+
"rewards/equation_reward_func": 0.0,
|
1009 |
+
"rewards/format_reward_func": 0.9947916716337204,
|
1010 |
+
"step": 154
|
1011 |
+
},
|
1012 |
+
{
|
1013 |
+
"completion_length": 20.242188155651093,
|
1014 |
+
"epoch": 0.0832,
|
1015 |
+
"grad_norm": 0.004715553205403204,
|
1016 |
+
"kl": 0.42333984375,
|
1017 |
+
"learning_rate": 7.603271194668835e-07,
|
1018 |
+
"loss": 0.0004,
|
1019 |
+
"reward": 1.0,
|
1020 |
+
"reward_std": 0.0,
|
1021 |
+
"rewards/equation_reward_func": 0.0,
|
1022 |
+
"rewards/format_reward_func": 1.0,
|
1023 |
+
"step": 156
|
1024 |
+
},
|
1025 |
+
{
|
1026 |
+
"completion_length": 18.898438036441803,
|
1027 |
+
"epoch": 0.08426666666666667,
|
1028 |
+
"grad_norm": 0.003966040759048578,
|
1029 |
+
"kl": 0.403076171875,
|
1030 |
+
"learning_rate": 7.541484888100973e-07,
|
1031 |
+
"loss": 0.0004,
|
1032 |
+
"reward": 1.0,
|
1033 |
+
"reward_std": 0.0,
|
1034 |
+
"rewards/equation_reward_func": 0.0,
|
1035 |
+
"rewards/format_reward_func": 1.0,
|
1036 |
+
"step": 158
|
1037 |
+
},
|
1038 |
+
{
|
1039 |
+
"completion_length": 16.60416716337204,
|
1040 |
+
"epoch": 0.08533333333333333,
|
1041 |
+
"grad_norm": 0.002003261027905268,
|
1042 |
+
"kl": 0.34228515625,
|
1043 |
+
"learning_rate": 7.479170784707574e-07,
|
1044 |
+
"loss": 0.0003,
|
1045 |
+
"reward": 0.9973958358168602,
|
1046 |
+
"reward_std": 0.007365695666521788,
|
1047 |
+
"rewards/equation_reward_func": 0.0,
|
1048 |
+
"rewards/format_reward_func": 0.9973958358168602,
|
1049 |
+
"step": 160
|
1050 |
+
},
|
1051 |
+
{
|
1052 |
+
"completion_length": 24.88802134990692,
|
1053 |
+
"epoch": 0.0864,
|
1054 |
+
"grad_norm": 0.009211378308009072,
|
1055 |
+
"kl": 0.384521484375,
|
1056 |
+
"learning_rate": 7.416341825421753e-07,
|
1057 |
+
"loss": 0.0004,
|
1058 |
+
"reward": 1.0,
|
1059 |
+
"reward_std": 0.0,
|
1060 |
+
"rewards/equation_reward_func": 0.0,
|
1061 |
+
"rewards/format_reward_func": 1.0,
|
1062 |
+
"step": 162
|
1063 |
+
},
|
1064 |
+
{
|
1065 |
+
"completion_length": 16.401042103767395,
|
1066 |
+
"epoch": 0.08746666666666666,
|
1067 |
+
"grad_norm": 0.005184187636080286,
|
1068 |
+
"kl": 0.3958740234375,
|
1069 |
+
"learning_rate": 7.353011058098103e-07,
|
1070 |
+
"loss": 0.0004,
|
1071 |
+
"reward": 1.0,
|
1072 |
+
"reward_std": 0.0,
|
1073 |
+
"rewards/equation_reward_func": 0.0,
|
1074 |
+
"rewards/format_reward_func": 1.0,
|
1075 |
+
"step": 164
|
1076 |
+
},
|
1077 |
+
{
|
1078 |
+
"completion_length": 21.299479722976685,
|
1079 |
+
"epoch": 0.08853333333333334,
|
1080 |
+
"grad_norm": 0.07832411386720319,
|
1081 |
+
"kl": 0.3946533203125,
|
1082 |
+
"learning_rate": 7.289191634803002e-07,
|
1083 |
+
"loss": 0.0004,
|
1084 |
+
"reward": 0.9947916716337204,
|
1085 |
+
"reward_std": 0.014731391333043575,
|
1086 |
+
"rewards/equation_reward_func": 0.0,
|
1087 |
+
"rewards/format_reward_func": 0.9947916716337204,
|
1088 |
+
"step": 166
|
1089 |
+
},
|
1090 |
+
{
|
1091 |
+
"completion_length": 21.127604603767395,
|
1092 |
+
"epoch": 0.0896,
|
1093 |
+
"grad_norm": 0.006189211303564496,
|
1094 |
+
"kl": 0.3651123046875,
|
1095 |
+
"learning_rate": 7.224896809083297e-07,
|
1096 |
+
"loss": 0.0004,
|
1097 |
+
"reward": 1.0,
|
1098 |
+
"reward_std": 0.0,
|
1099 |
+
"rewards/equation_reward_func": 0.0,
|
1100 |
+
"rewards/format_reward_func": 1.0,
|
1101 |
+
"step": 168
|
1102 |
+
},
|
1103 |
+
{
|
1104 |
+
"completion_length": 18.304687917232513,
|
1105 |
+
"epoch": 0.09066666666666667,
|
1106 |
+
"grad_norm": 0.002963052569393672,
|
1107 |
+
"kl": 0.345458984375,
|
1108 |
+
"learning_rate": 7.160139933213898e-07,
|
1109 |
+
"loss": 0.0003,
|
1110 |
+
"reward": 1.0,
|
1111 |
+
"reward_std": 0.0,
|
1112 |
+
"rewards/equation_reward_func": 0.0,
|
1113 |
+
"rewards/format_reward_func": 1.0,
|
1114 |
+
"step": 170
|
1115 |
+
},
|
1116 |
+
{
|
1117 |
+
"completion_length": 24.544271409511566,
|
1118 |
+
"epoch": 0.09173333333333333,
|
1119 |
+
"grad_norm": 0.006809551131670742,
|
1120 |
+
"kl": 0.376708984375,
|
1121 |
+
"learning_rate": 7.094934455424888e-07,
|
1122 |
+
"loss": 0.0004,
|
1123 |
+
"reward": 1.0,
|
1124 |
+
"reward_std": 0.0,
|
1125 |
+
"rewards/equation_reward_func": 0.0,
|
1126 |
+
"rewards/format_reward_func": 1.0,
|
1127 |
+
"step": 172
|
1128 |
+
},
|
1129 |
+
{
|
1130 |
+
"completion_length": 23.06510454416275,
|
1131 |
+
"epoch": 0.0928,
|
1132 |
+
"grad_norm": 0.007169853628551621,
|
1133 |
+
"kl": 0.377685546875,
|
1134 |
+
"learning_rate": 7.029293917108677e-07,
|
1135 |
+
"loss": 0.0004,
|
1136 |
+
"reward": 1.0,
|
1137 |
+
"reward_std": 0.0,
|
1138 |
+
"rewards/equation_reward_func": 0.0,
|
1139 |
+
"rewards/format_reward_func": 1.0,
|
1140 |
+
"step": 174
|
1141 |
+
},
|
1142 |
+
{
|
1143 |
+
"completion_length": 29.372397005558014,
|
1144 |
+
"epoch": 0.09386666666666667,
|
1145 |
+
"grad_norm": 0.0049609216072808585,
|
1146 |
+
"kl": 0.38330078125,
|
1147 |
+
"learning_rate": 6.963231950007844e-07,
|
1148 |
+
"loss": 0.0004,
|
1149 |
+
"reward": 1.0,
|
1150 |
+
"reward_std": 0.0,
|
1151 |
+
"rewards/equation_reward_func": 0.0,
|
1152 |
+
"rewards/format_reward_func": 1.0,
|
1153 |
+
"step": 176
|
1154 |
+
},
|
1155 |
+
{
|
1156 |
+
"completion_length": 22.596354842185974,
|
1157 |
+
"epoch": 0.09493333333333333,
|
1158 |
+
"grad_norm": 0.0033493670757974436,
|
1159 |
+
"kl": 0.3634033203125,
|
1160 |
+
"learning_rate": 6.896762273384178e-07,
|
1161 |
+
"loss": 0.0004,
|
1162 |
+
"reward": 1.0,
|
1163 |
+
"reward_std": 0.0,
|
1164 |
+
"rewards/equation_reward_func": 0.0,
|
1165 |
+
"rewards/format_reward_func": 1.0,
|
1166 |
+
"step": 178
|
1167 |
+
},
|
1168 |
+
{
|
1169 |
+
"completion_length": 21.070313334465027,
|
1170 |
+
"epoch": 0.096,
|
1171 |
+
"grad_norm": 0.007358426048838388,
|
1172 |
+
"kl": 0.374267578125,
|
1173 |
+
"learning_rate": 6.829898691169579e-07,
|
1174 |
+
"loss": 0.0004,
|
1175 |
+
"reward": 1.0,
|
1176 |
+
"reward_std": 0.0,
|
1177 |
+
"rewards/equation_reward_func": 0.0,
|
1178 |
+
"rewards/format_reward_func": 1.0,
|
1179 |
+
"step": 180
|
1180 |
+
},
|
1181 |
+
{
|
1182 |
+
"completion_length": 25.106771528720856,
|
1183 |
+
"epoch": 0.09706666666666666,
|
1184 |
+
"grad_norm": 0.002673392643388894,
|
1185 |
+
"kl": 0.3927001953125,
|
1186 |
+
"learning_rate": 6.762655089099353e-07,
|
1187 |
+
"loss": 0.0004,
|
1188 |
+
"reward": 1.0,
|
1189 |
+
"reward_std": 0.0,
|
1190 |
+
"rewards/equation_reward_func": 0.0,
|
1191 |
+
"rewards/format_reward_func": 1.0,
|
1192 |
+
"step": 182
|
1193 |
+
},
|
1194 |
+
{
|
1195 |
+
"completion_length": 23.947917222976685,
|
1196 |
+
"epoch": 0.09813333333333334,
|
1197 |
+
"grad_norm": 0.009888137802143636,
|
1198 |
+
"kl": 0.4693603515625,
|
1199 |
+
"learning_rate": 6.695045431828524e-07,
|
1200 |
+
"loss": 0.0005,
|
1201 |
+
"reward": 1.0,
|
1202 |
+
"reward_std": 0.0,
|
1203 |
+
"rewards/equation_reward_func": 0.0,
|
1204 |
+
"rewards/format_reward_func": 1.0,
|
1205 |
+
"step": 184
|
1206 |
+
},
|
1207 |
+
{
|
1208 |
+
"completion_length": 20.893229484558105,
|
1209 |
+
"epoch": 0.0992,
|
1210 |
+
"grad_norm": 0.0022607662791007638,
|
1211 |
+
"kl": 0.3218994140625,
|
1212 |
+
"learning_rate": 6.627083760031754e-07,
|
1213 |
+
"loss": 0.0003,
|
1214 |
+
"reward": 1.0,
|
1215 |
+
"reward_std": 0.0,
|
1216 |
+
"rewards/equation_reward_func": 0.0,
|
1217 |
+
"rewards/format_reward_func": 1.0,
|
1218 |
+
"step": 186
|
1219 |
+
},
|
1220 |
+
{
|
1221 |
+
"completion_length": 19.361979722976685,
|
1222 |
+
"epoch": 0.10026666666666667,
|
1223 |
+
"grad_norm": 0.0032574710279835964,
|
1224 |
+
"kl": 0.3485107421875,
|
1225 |
+
"learning_rate": 6.558784187487494e-07,
|
1226 |
+
"loss": 0.0003,
|
1227 |
+
"reward": 1.0,
|
1228 |
+
"reward_std": 0.0,
|
1229 |
+
"rewards/equation_reward_func": 0.0,
|
1230 |
+
"rewards/format_reward_func": 1.0,
|
1231 |
+
"step": 188
|
1232 |
+
},
|
1233 |
+
{
|
1234 |
+
"completion_length": 20.19270896911621,
|
1235 |
+
"epoch": 0.10133333333333333,
|
1236 |
+
"grad_norm": 0.003981197482172737,
|
1237 |
+
"kl": 0.3470458984375,
|
1238 |
+
"learning_rate": 6.490160898146918e-07,
|
1239 |
+
"loss": 0.0003,
|
1240 |
+
"reward": 1.0,
|
1241 |
+
"reward_std": 0.0,
|
1242 |
+
"rewards/equation_reward_func": 0.0,
|
1243 |
+
"rewards/format_reward_func": 1.0,
|
1244 |
+
"step": 190
|
1245 |
+
},
|
1246 |
+
{
|
1247 |
+
"completion_length": 19.901042342185974,
|
1248 |
+
"epoch": 0.1024,
|
1249 |
+
"grad_norm": 0.002514384073907443,
|
1250 |
+
"kl": 0.3548583984375,
|
1251 |
+
"learning_rate": 6.421228143188324e-07,
|
1252 |
+
"loss": 0.0004,
|
1253 |
+
"reward": 1.0,
|
1254 |
+
"reward_std": 0.0,
|
1255 |
+
"rewards/equation_reward_func": 0.0,
|
1256 |
+
"rewards/format_reward_func": 1.0,
|
1257 |
+
"step": 192
|
1258 |
+
},
|
1259 |
+
{
|
1260 |
+
"completion_length": 24.843750834465027,
|
1261 |
+
"epoch": 0.10346666666666667,
|
1262 |
+
"grad_norm": 0.007842781472841063,
|
1263 |
+
"kl": 0.3717041015625,
|
1264 |
+
"learning_rate": 6.352000238057539e-07,
|
1265 |
+
"loss": 0.0004,
|
1266 |
+
"reward": 1.0,
|
1267 |
+
"reward_std": 0.0,
|
1268 |
+
"rewards/equation_reward_func": 0.0,
|
1269 |
+
"rewards/format_reward_func": 1.0,
|
1270 |
+
"step": 194
|
1271 |
+
},
|
1272 |
+
{
|
1273 |
+
"completion_length": 21.859375715255737,
|
1274 |
+
"epoch": 0.10453333333333334,
|
1275 |
+
"grad_norm": 0.0060397124228908665,
|
1276 |
+
"kl": 0.357666015625,
|
1277 |
+
"learning_rate": 6.282491559495004e-07,
|
1278 |
+
"loss": 0.0004,
|
1279 |
+
"reward": 1.0,
|
1280 |
+
"reward_std": 0.0,
|
1281 |
+
"rewards/equation_reward_func": 0.0,
|
1282 |
+
"rewards/format_reward_func": 1.0,
|
1283 |
+
"step": 196
|
1284 |
+
},
|
1285 |
+
{
|
1286 |
+
"completion_length": 22.700521767139435,
|
1287 |
+
"epoch": 0.1056,
|
1288 |
+
"grad_norm": 0.005604073044775416,
|
1289 |
+
"kl": 0.4561767578125,
|
1290 |
+
"learning_rate": 6.212716542550112e-07,
|
1291 |
+
"loss": 0.0005,
|
1292 |
+
"reward": 1.0,
|
1293 |
+
"reward_std": 0.0,
|
1294 |
+
"rewards/equation_reward_func": 0.0,
|
1295 |
+
"rewards/format_reward_func": 1.0,
|
1296 |
+
"step": 198
|
1297 |
+
},
|
1298 |
+
{
|
1299 |
+
"completion_length": 22.901042222976685,
|
1300 |
+
"epoch": 0.10666666666666667,
|
1301 |
+
"grad_norm": 0.0026562431855837636,
|
1302 |
+
"kl": 0.3526611328125,
|
1303 |
+
"learning_rate": 6.142689677583445e-07,
|
1304 |
+
"loss": 0.0004,
|
1305 |
+
"reward": 1.0,
|
1306 |
+
"reward_std": 0.0,
|
1307 |
+
"rewards/equation_reward_func": 0.0,
|
1308 |
+
"rewards/format_reward_func": 1.0,
|
1309 |
+
"step": 200
|
1310 |
+
},
|
1311 |
+
{
|
1312 |
+
"completion_length": 24.648437798023224,
|
1313 |
+
"epoch": 0.10773333333333333,
|
1314 |
+
"grad_norm": 0.002588639622294546,
|
1315 |
+
"kl": 0.3214111328125,
|
1316 |
+
"learning_rate": 6.072425507257527e-07,
|
1317 |
+
"loss": 0.0003,
|
1318 |
+
"reward": 1.0,
|
1319 |
+
"reward_std": 0.0,
|
1320 |
+
"rewards/equation_reward_func": 0.0,
|
1321 |
+
"rewards/format_reward_func": 1.0,
|
1322 |
+
"step": 202
|
1323 |
+
},
|
1324 |
+
{
|
1325 |
+
"completion_length": 22.382813036441803,
|
1326 |
+
"epoch": 0.1088,
|
1327 |
+
"grad_norm": 0.00323664281124744,
|
1328 |
+
"kl": 0.36767578125,
|
1329 |
+
"learning_rate": 6.001938623516705e-07,
|
1330 |
+
"loss": 0.0004,
|
1331 |
+
"reward": 1.0,
|
1332 |
+
"reward_std": 0.0,
|
1333 |
+
"rewards/equation_reward_func": 0.0,
|
1334 |
+
"rewards/format_reward_func": 1.0,
|
1335 |
+
"step": 204
|
1336 |
+
},
|
1337 |
+
{
|
1338 |
+
"completion_length": 23.174479961395264,
|
1339 |
+
"epoch": 0.10986666666666667,
|
1340 |
+
"grad_norm": 0.004194373433624107,
|
1341 |
+
"kl": 0.361572265625,
|
1342 |
+
"learning_rate": 5.931243664556802e-07,
|
1343 |
+
"loss": 0.0004,
|
1344 |
+
"reward": 1.0,
|
1345 |
+
"reward_std": 0.0,
|
1346 |
+
"rewards/equation_reward_func": 0.0,
|
1347 |
+
"rewards/format_reward_func": 1.0,
|
1348 |
+
"step": 206
|
1349 |
+
},
|
1350 |
+
{
|
1351 |
+
"completion_length": 22.494792342185974,
|
1352 |
+
"epoch": 0.11093333333333333,
|
1353 |
+
"grad_norm": 0.0635254172279242,
|
1354 |
+
"kl": 0.389404296875,
|
1355 |
+
"learning_rate": 5.860355311785175e-07,
|
1356 |
+
"loss": 0.0004,
|
1357 |
+
"reward": 0.9973958358168602,
|
1358 |
+
"reward_std": 0.007365695666521788,
|
1359 |
+
"rewards/equation_reward_func": 0.0,
|
1360 |
+
"rewards/format_reward_func": 0.9973958358168602,
|
1361 |
+
"step": 208
|
1362 |
+
},
|
1363 |
+
{
|
1364 |
+
"completion_length": 24.593750715255737,
|
1365 |
+
"epoch": 0.112,
|
1366 |
+
"grad_norm": 0.0040160843770763,
|
1367 |
+
"kl": 0.381103515625,
|
1368 |
+
"learning_rate": 5.78928828677177e-07,
|
1369 |
+
"loss": 0.0004,
|
1370 |
+
"reward": 1.0,
|
1371 |
+
"reward_std": 0.0,
|
1372 |
+
"rewards/equation_reward_func": 0.0,
|
1373 |
+
"rewards/format_reward_func": 1.0,
|
1374 |
+
"step": 210
|
1375 |
+
},
|
1376 |
+
{
|
1377 |
+
"completion_length": 19.640625715255737,
|
1378 |
+
"epoch": 0.11306666666666666,
|
1379 |
+
"grad_norm": 0.004056894485336028,
|
1380 |
+
"kl": 0.3604736328125,
|
1381 |
+
"learning_rate": 5.718057348191874e-07,
|
1382 |
+
"loss": 0.0004,
|
1383 |
+
"reward": 1.0,
|
1384 |
+
"reward_std": 0.0,
|
1385 |
+
"rewards/equation_reward_func": 0.0,
|
1386 |
+
"rewards/format_reward_func": 1.0,
|
1387 |
+
"step": 212
|
1388 |
+
},
|
1389 |
+
{
|
1390 |
+
"completion_length": 26.078125655651093,
|
1391 |
+
"epoch": 0.11413333333333334,
|
1392 |
+
"grad_norm": 0.001426529705853739,
|
1393 |
+
"kl": 0.3330078125,
|
1394 |
+
"learning_rate": 5.646677288761132e-07,
|
1395 |
+
"loss": 0.0003,
|
1396 |
+
"reward": 0.9973958358168602,
|
1397 |
+
"reward_std": 0.007365695666521788,
|
1398 |
+
"rewards/equation_reward_func": 0.0,
|
1399 |
+
"rewards/format_reward_func": 0.9973958358168602,
|
1400 |
+
"step": 214
|
1401 |
+
},
|
1402 |
+
{
|
1403 |
+
"completion_length": 18.17447954416275,
|
1404 |
+
"epoch": 0.1152,
|
1405 |
+
"grad_norm": 0.00410254063002437,
|
1406 |
+
"kl": 0.360107421875,
|
1407 |
+
"learning_rate": 5.575162932163501e-07,
|
1408 |
+
"loss": 0.0004,
|
1409 |
+
"reward": 1.0,
|
1410 |
+
"reward_std": 0.0,
|
1411 |
+
"rewards/equation_reward_func": 0.0,
|
1412 |
+
"rewards/format_reward_func": 1.0,
|
1413 |
+
"step": 216
|
1414 |
+
},
|
1415 |
+
{
|
1416 |
+
"completion_length": 19.231771647930145,
|
1417 |
+
"epoch": 0.11626666666666667,
|
1418 |
+
"grad_norm": 0.004454685182350467,
|
1419 |
+
"kl": 0.3358154296875,
|
1420 |
+
"learning_rate": 5.503529129972792e-07,
|
1421 |
+
"loss": 0.0003,
|
1422 |
+
"reward": 1.0,
|
1423 |
+
"reward_std": 0.0,
|
1424 |
+
"rewards/equation_reward_func": 0.0,
|
1425 |
+
"rewards/format_reward_func": 1.0,
|
1426 |
+
"step": 218
|
1427 |
+
},
|
1428 |
+
{
|
1429 |
+
"completion_length": 22.81250023841858,
|
1430 |
+
"epoch": 0.11733333333333333,
|
1431 |
+
"grad_norm": 0.0033331903371956913,
|
1432 |
+
"kl": 0.3734130859375,
|
1433 |
+
"learning_rate": 5.431790758568388e-07,
|
1434 |
+
"loss": 0.0004,
|
1435 |
+
"reward": 1.0,
|
1436 |
+
"reward_std": 0.0,
|
1437 |
+
"rewards/equation_reward_func": 0.0,
|
1438 |
+
"rewards/format_reward_func": 1.0,
|
1439 |
+
"step": 220
|
1440 |
+
},
|
1441 |
+
{
|
1442 |
+
"completion_length": 33.567709386348724,
|
1443 |
+
"epoch": 0.1184,
|
1444 |
+
"grad_norm": 0.15156820624659995,
|
1445 |
+
"kl": 0.3978271484375,
|
1446 |
+
"learning_rate": 5.359962716045835e-07,
|
1447 |
+
"loss": 0.0004,
|
1448 |
+
"reward": 0.9973958358168602,
|
1449 |
+
"reward_std": 0.007365695666521788,
|
1450 |
+
"rewards/equation_reward_func": 0.0,
|
1451 |
+
"rewards/format_reward_func": 0.9973958358168602,
|
1452 |
+
"step": 222
|
1453 |
+
},
|
1454 |
+
{
|
1455 |
+
"completion_length": 23.721354722976685,
|
1456 |
+
"epoch": 0.11946666666666667,
|
1457 |
+
"grad_norm": 0.1302812080137746,
|
1458 |
+
"kl": 0.3497314453125,
|
1459 |
+
"learning_rate": 5.288059919122921e-07,
|
1460 |
+
"loss": 0.0003,
|
1461 |
+
"reward": 0.9973958358168602,
|
1462 |
+
"reward_std": 0.007365695666521788,
|
1463 |
+
"rewards/equation_reward_func": 0.0,
|
1464 |
+
"rewards/format_reward_func": 0.9973958358168602,
|
1465 |
+
"step": 224
|
1466 |
+
},
|
1467 |
+
{
|
1468 |
+
"completion_length": 23.40104216337204,
|
1469 |
+
"epoch": 0.12053333333333334,
|
1470 |
+
"grad_norm": 0.10213989334337155,
|
1471 |
+
"kl": 0.3587646484375,
|
1472 |
+
"learning_rate": 5.216097300041869e-07,
|
1473 |
+
"loss": 0.0004,
|
1474 |
+
"reward": 0.9973958358168602,
|
1475 |
+
"reward_std": 0.007365695666521788,
|
1476 |
+
"rewards/equation_reward_func": 0.0,
|
1477 |
+
"rewards/format_reward_func": 0.9973958358168602,
|
1478 |
+
"step": 226
|
1479 |
+
},
|
1480 |
+
{
|
1481 |
+
"completion_length": 28.752604722976685,
|
1482 |
+
"epoch": 0.1216,
|
1483 |
+
"grad_norm": 0.00405575423941108,
|
1484 |
+
"kl": 0.356689453125,
|
1485 |
+
"learning_rate": 5.144089803468332e-07,
|
1486 |
+
"loss": 0.0004,
|
1487 |
+
"reward": 1.0,
|
1488 |
+
"reward_std": 0.0,
|
1489 |
+
"rewards/equation_reward_func": 0.0,
|
1490 |
+
"rewards/format_reward_func": 1.0,
|
1491 |
+
"step": 228
|
1492 |
+
},
|
1493 |
+
{
|
1494 |
+
"completion_length": 21.56770896911621,
|
1495 |
+
"epoch": 0.12266666666666666,
|
1496 |
+
"grad_norm": 0.006688124816156981,
|
1497 |
+
"kl": 0.38134765625,
|
1498 |
+
"learning_rate": 5.072052383387786e-07,
|
1499 |
+
"loss": 0.0004,
|
1500 |
+
"reward": 1.0,
|
1501 |
+
"reward_std": 0.0,
|
1502 |
+
"rewards/equation_reward_func": 0.0,
|
1503 |
+
"rewards/format_reward_func": 1.0,
|
1504 |
+
"step": 230
|
1505 |
+
},
|
1506 |
+
{
|
1507 |
+
"completion_length": 30.83333396911621,
|
1508 |
+
"epoch": 0.12373333333333333,
|
1509 |
+
"grad_norm": 0.003894854329196007,
|
1510 |
+
"kl": 0.36962890625,
|
1511 |
+
"learning_rate": 5e-07,
|
1512 |
+
"loss": 0.0004,
|
1513 |
+
"reward": 1.0,
|
1514 |
+
"reward_std": 0.0,
|
1515 |
+
"rewards/equation_reward_func": 0.0,
|
1516 |
+
"rewards/format_reward_func": 1.0,
|
1517 |
+
"step": 232
|
1518 |
+
},
|
1519 |
+
{
|
1520 |
+
"completion_length": 38.3385426402092,
|
1521 |
+
"epoch": 0.1248,
|
1522 |
+
"grad_norm": 0.003321341352419865,
|
1523 |
+
"kl": 0.339111328125,
|
1524 |
+
"learning_rate": 4.927947616612215e-07,
|
1525 |
+
"loss": 0.0003,
|
1526 |
+
"reward": 1.0,
|
1527 |
+
"reward_std": 0.0,
|
1528 |
+
"rewards/equation_reward_func": 0.0,
|
1529 |
+
"rewards/format_reward_func": 1.0,
|
1530 |
+
"step": 234
|
1531 |
+
},
|
1532 |
+
{
|
1533 |
+
"completion_length": 25.40104252099991,
|
1534 |
+
"epoch": 0.12586666666666665,
|
1535 |
+
"grad_norm": 0.003665106813183815,
|
1536 |
+
"kl": 0.347900390625,
|
1537 |
+
"learning_rate": 4.855910196531669e-07,
|
1538 |
+
"loss": 0.0003,
|
1539 |
+
"reward": 1.0,
|
1540 |
+
"reward_std": 0.0,
|
1541 |
+
"rewards/equation_reward_func": 0.0,
|
1542 |
+
"rewards/format_reward_func": 1.0,
|
1543 |
+
"step": 236
|
1544 |
+
},
|
1545 |
+
{
|
1546 |
+
"completion_length": 32.97656351327896,
|
1547 |
+
"epoch": 0.12693333333333334,
|
1548 |
+
"grad_norm": 0.0029113458934489096,
|
1549 |
+
"kl": 0.3333740234375,
|
1550 |
+
"learning_rate": 4.783902699958129e-07,
|
1551 |
+
"loss": 0.0003,
|
1552 |
+
"reward": 1.0,
|
1553 |
+
"reward_std": 0.0,
|
1554 |
+
"rewards/equation_reward_func": 0.0,
|
1555 |
+
"rewards/format_reward_func": 1.0,
|
1556 |
+
"step": 238
|
1557 |
+
},
|
1558 |
+
{
|
1559 |
+
"completion_length": 32.789063453674316,
|
1560 |
+
"epoch": 0.128,
|
1561 |
+
"grad_norm": 0.2144030619978656,
|
1562 |
+
"kl": 0.98974609375,
|
1563 |
+
"learning_rate": 4.711940080877079e-07,
|
1564 |
+
"loss": 0.001,
|
1565 |
+
"reward": 1.0,
|
1566 |
+
"reward_std": 0.0,
|
1567 |
+
"rewards/equation_reward_func": 0.0,
|
1568 |
+
"rewards/format_reward_func": 1.0,
|
1569 |
+
"step": 240
|
1570 |
+
},
|
1571 |
+
{
|
1572 |
+
"completion_length": 27.617188334465027,
|
1573 |
+
"epoch": 0.12906666666666666,
|
1574 |
+
"grad_norm": 0.004925288676087789,
|
1575 |
+
"kl": 0.355712890625,
|
1576 |
+
"learning_rate": 4.6400372839541647e-07,
|
1577 |
+
"loss": 0.0004,
|
1578 |
+
"reward": 1.0,
|
1579 |
+
"reward_std": 0.0,
|
1580 |
+
"rewards/equation_reward_func": 0.0,
|
1581 |
+
"rewards/format_reward_func": 1.0,
|
1582 |
+
"step": 242
|
1583 |
+
},
|
1584 |
+
{
|
1585 |
+
"completion_length": 27.859375417232513,
|
1586 |
+
"epoch": 0.13013333333333332,
|
1587 |
+
"grad_norm": 0.004078504522837724,
|
1588 |
+
"kl": 0.3455810546875,
|
1589 |
+
"learning_rate": 4.568209241431614e-07,
|
1590 |
+
"loss": 0.0003,
|
1591 |
+
"reward": 1.0,
|
1592 |
+
"reward_std": 0.0,
|
1593 |
+
"rewards/equation_reward_func": 0.0,
|
1594 |
+
"rewards/format_reward_func": 1.0,
|
1595 |
+
"step": 244
|
1596 |
+
},
|
1597 |
+
{
|
1598 |
+
"completion_length": 38.55729287862778,
|
1599 |
+
"epoch": 0.1312,
|
1600 |
+
"grad_norm": 0.003946730384617455,
|
1601 |
+
"kl": 0.3524169921875,
|
1602 |
+
"learning_rate": 4.4964708700272086e-07,
|
1603 |
+
"loss": 0.0004,
|
1604 |
+
"reward": 1.0,
|
1605 |
+
"reward_std": 0.0,
|
1606 |
+
"rewards/equation_reward_func": 0.0,
|
1607 |
+
"rewards/format_reward_func": 1.0,
|
1608 |
+
"step": 246
|
1609 |
+
},
|
1610 |
+
{
|
1611 |
+
"completion_length": 36.60937589406967,
|
1612 |
+
"epoch": 0.13226666666666667,
|
1613 |
+
"grad_norm": 0.0025911319683286625,
|
1614 |
+
"kl": 0.3311767578125,
|
1615 |
+
"learning_rate": 4.424837067836499e-07,
|
1616 |
+
"loss": 0.0003,
|
1617 |
+
"reward": 1.0,
|
1618 |
+
"reward_std": 0.0,
|
1619 |
+
"rewards/equation_reward_func": 0.0,
|
1620 |
+
"rewards/format_reward_func": 1.0,
|
1621 |
+
"step": 248
|
1622 |
+
},
|
1623 |
+
{
|
1624 |
+
"completion_length": 34.45312637090683,
|
1625 |
+
"epoch": 0.13333333333333333,
|
1626 |
+
"grad_norm": 0.02082559848620119,
|
1627 |
+
"kl": 0.3614501953125,
|
1628 |
+
"learning_rate": 4.353322711238869e-07,
|
1629 |
+
"loss": 0.0004,
|
1630 |
+
"reward": 1.0,
|
1631 |
+
"reward_std": 0.0,
|
1632 |
+
"rewards/equation_reward_func": 0.0,
|
1633 |
+
"rewards/format_reward_func": 1.0,
|
1634 |
+
"step": 250
|
1635 |
+
},
|
1636 |
+
{
|
1637 |
+
"completion_length": 44.54427218437195,
|
1638 |
+
"epoch": 0.1344,
|
1639 |
+
"grad_norm": 0.004583784786433975,
|
1640 |
+
"kl": 0.3564453125,
|
1641 |
+
"learning_rate": 4.2819426518081256e-07,
|
1642 |
+
"loss": 0.0004,
|
1643 |
+
"reward": 0.9973958358168602,
|
1644 |
+
"reward_std": 0.007365695666521788,
|
1645 |
+
"rewards/equation_reward_func": 0.0,
|
1646 |
+
"rewards/format_reward_func": 0.9973958358168602,
|
1647 |
+
"step": 252
|
1648 |
+
},
|
1649 |
+
{
|
1650 |
+
"completion_length": 32.47656333446503,
|
1651 |
+
"epoch": 0.13546666666666668,
|
1652 |
+
"grad_norm": 0.2516579496285295,
|
1653 |
+
"kl": 0.348388671875,
|
1654 |
+
"learning_rate": 4.21071171322823e-07,
|
1655 |
+
"loss": 0.0003,
|
1656 |
+
"reward": 0.9973958358168602,
|
1657 |
+
"reward_std": 0.007365695666521788,
|
1658 |
+
"rewards/equation_reward_func": 0.0,
|
1659 |
+
"rewards/format_reward_func": 0.9973958358168602,
|
1660 |
+
"step": 254
|
1661 |
+
},
|
1662 |
+
{
|
1663 |
+
"completion_length": 33.247396886348724,
|
1664 |
+
"epoch": 0.13653333333333334,
|
1665 |
+
"grad_norm": 0.003750844211497512,
|
1666 |
+
"kl": 0.336669921875,
|
1667 |
+
"learning_rate": 4.139644688214826e-07,
|
1668 |
+
"loss": 0.0003,
|
1669 |
+
"reward": 1.0,
|
1670 |
+
"reward_std": 0.0,
|
1671 |
+
"rewards/equation_reward_func": 0.0,
|
1672 |
+
"rewards/format_reward_func": 1.0,
|
1673 |
+
"step": 256
|
1674 |
+
},
|
1675 |
+
{
|
1676 |
+
"completion_length": 40.09375071525574,
|
1677 |
+
"epoch": 0.1376,
|
1678 |
+
"grad_norm": 0.0056285121180003365,
|
1679 |
+
"kl": 0.3736572265625,
|
1680 |
+
"learning_rate": 4.068756335443198e-07,
|
1681 |
+
"loss": 0.0004,
|
1682 |
+
"reward": 1.0,
|
1683 |
+
"reward_std": 0.0,
|
1684 |
+
"rewards/equation_reward_func": 0.0,
|
1685 |
+
"rewards/format_reward_func": 1.0,
|
1686 |
+
"step": 258
|
1687 |
+
},
|
1688 |
+
{
|
1689 |
+
"completion_length": 32.55468821525574,
|
1690 |
+
"epoch": 0.13866666666666666,
|
1691 |
+
"grad_norm": 0.19004745287506442,
|
1692 |
+
"kl": 0.3536376953125,
|
1693 |
+
"learning_rate": 3.998061376483297e-07,
|
1694 |
+
"loss": 0.0004,
|
1695 |
+
"reward": 0.9947916716337204,
|
1696 |
+
"reward_std": 0.014731391333043575,
|
1697 |
+
"rewards/equation_reward_func": 0.0,
|
1698 |
+
"rewards/format_reward_func": 0.9947916716337204,
|
1699 |
+
"step": 260
|
1700 |
+
},
|
1701 |
+
{
|
1702 |
+
"completion_length": 41.53125083446503,
|
1703 |
+
"epoch": 0.13973333333333332,
|
1704 |
+
"grad_norm": 0.005613467195859889,
|
1705 |
+
"kl": 0.3878173828125,
|
1706 |
+
"learning_rate": 3.9275744927424723e-07,
|
1707 |
+
"loss": 0.0004,
|
1708 |
+
"reward": 0.9973958358168602,
|
1709 |
+
"reward_std": 0.007365695666521788,
|
1710 |
+
"rewards/equation_reward_func": 0.0,
|
1711 |
+
"rewards/format_reward_func": 0.9973958358168602,
|
1712 |
+
"step": 262
|
1713 |
+
},
|
1714 |
+
{
|
1715 |
+
"completion_length": 41.14323008060455,
|
1716 |
+
"epoch": 0.1408,
|
1717 |
+
"grad_norm": 0.004079597325625193,
|
1718 |
+
"kl": 0.341552734375,
|
1719 |
+
"learning_rate": 3.8573103224165547e-07,
|
1720 |
+
"loss": 0.0003,
|
1721 |
+
"reward": 0.9973958358168602,
|
1722 |
+
"reward_std": 0.007365695666521788,
|
1723 |
+
"rewards/equation_reward_func": 0.0,
|
1724 |
+
"rewards/format_reward_func": 0.9973958358168602,
|
1725 |
+
"step": 264
|
1726 |
+
},
|
1727 |
+
{
|
1728 |
+
"completion_length": 45.320313930511475,
|
1729 |
+
"epoch": 0.14186666666666667,
|
1730 |
+
"grad_norm": 0.004450670587730382,
|
1731 |
+
"kl": 0.3409423828125,
|
1732 |
+
"learning_rate": 3.787283457449889e-07,
|
1733 |
+
"loss": 0.0003,
|
1734 |
+
"reward": 1.0,
|
1735 |
+
"reward_std": 0.0,
|
1736 |
+
"rewards/equation_reward_func": 0.0,
|
1737 |
+
"rewards/format_reward_func": 1.0,
|
1738 |
+
"step": 266
|
1739 |
+
},
|
1740 |
+
{
|
1741 |
+
"completion_length": 34.77083444595337,
|
1742 |
+
"epoch": 0.14293333333333333,
|
1743 |
+
"grad_norm": 0.005059899644254497,
|
1744 |
+
"kl": 0.3505859375,
|
1745 |
+
"learning_rate": 3.717508440504997e-07,
|
1746 |
+
"loss": 0.0004,
|
1747 |
+
"reward": 1.0,
|
1748 |
+
"reward_std": 0.0,
|
1749 |
+
"rewards/equation_reward_func": 0.0,
|
1750 |
+
"rewards/format_reward_func": 1.0,
|
1751 |
+
"step": 268
|
1752 |
+
},
|
1753 |
+
{
|
1754 |
+
"completion_length": 34.54948043823242,
|
1755 |
+
"epoch": 0.144,
|
1756 |
+
"grad_norm": 0.23991193127694865,
|
1757 |
+
"kl": 0.3560791015625,
|
1758 |
+
"learning_rate": 3.64799976194246e-07,
|
1759 |
+
"loss": 0.0004,
|
1760 |
+
"reward": 0.9973958358168602,
|
1761 |
+
"reward_std": 0.007365695666521788,
|
1762 |
+
"rewards/equation_reward_func": 0.0,
|
1763 |
+
"rewards/format_reward_func": 0.9973958358168602,
|
1764 |
+
"step": 270
|
1765 |
+
},
|
1766 |
+
{
|
1767 |
+
"completion_length": 25.007812976837158,
|
1768 |
+
"epoch": 0.14506666666666668,
|
1769 |
+
"grad_norm": 0.004586704746066067,
|
1770 |
+
"kl": 0.342529296875,
|
1771 |
+
"learning_rate": 3.5787718568116757e-07,
|
1772 |
+
"loss": 0.0003,
|
1773 |
+
"reward": 1.0,
|
1774 |
+
"reward_std": 0.0,
|
1775 |
+
"rewards/equation_reward_func": 0.0,
|
1776 |
+
"rewards/format_reward_func": 1.0,
|
1777 |
+
"step": 272
|
1778 |
+
},
|
1779 |
+
{
|
1780 |
+
"completion_length": 33.093751192092896,
|
1781 |
+
"epoch": 0.14613333333333334,
|
1782 |
+
"grad_norm": 0.07458441934892074,
|
1783 |
+
"kl": 0.3690185546875,
|
1784 |
+
"learning_rate": 3.5098391018530813e-07,
|
1785 |
+
"loss": 0.0004,
|
1786 |
+
"reward": 0.9973958358168602,
|
1787 |
+
"reward_std": 0.007365695666521788,
|
1788 |
+
"rewards/equation_reward_func": 0.0,
|
1789 |
+
"rewards/format_reward_func": 0.9973958358168602,
|
1790 |
+
"step": 274
|
1791 |
+
},
|
1792 |
+
{
|
1793 |
+
"completion_length": 26.036458909511566,
|
1794 |
+
"epoch": 0.1472,
|
1795 |
+
"grad_norm": 0.0018656461831637952,
|
1796 |
+
"kl": 0.3399658203125,
|
1797 |
+
"learning_rate": 3.4412158125125073e-07,
|
1798 |
+
"loss": 0.0003,
|
1799 |
+
"reward": 1.0,
|
1800 |
+
"reward_std": 0.0,
|
1801 |
+
"rewards/equation_reward_func": 0.0,
|
1802 |
+
"rewards/format_reward_func": 1.0,
|
1803 |
+
"step": 276
|
1804 |
+
},
|
1805 |
+
{
|
1806 |
+
"completion_length": 27.08854240179062,
|
1807 |
+
"epoch": 0.14826666666666666,
|
1808 |
+
"grad_norm": 0.008897084345492313,
|
1809 |
+
"kl": 0.3919677734375,
|
1810 |
+
"learning_rate": 3.372916239968245e-07,
|
1811 |
+
"loss": 0.0004,
|
1812 |
+
"reward": 1.0,
|
1813 |
+
"reward_std": 0.0,
|
1814 |
+
"rewards/equation_reward_func": 0.0,
|
1815 |
+
"rewards/format_reward_func": 1.0,
|
1816 |
+
"step": 278
|
1817 |
+
},
|
1818 |
+
{
|
1819 |
+
"completion_length": 29.460938274860382,
|
1820 |
+
"epoch": 0.14933333333333335,
|
1821 |
+
"grad_norm": 0.0038377037869509346,
|
1822 |
+
"kl": 0.3658447265625,
|
1823 |
+
"learning_rate": 3.3049545681714775e-07,
|
1824 |
+
"loss": 0.0004,
|
1825 |
+
"reward": 1.0,
|
1826 |
+
"reward_std": 0.0,
|
1827 |
+
"rewards/equation_reward_func": 0.0,
|
1828 |
+
"rewards/format_reward_func": 1.0,
|
1829 |
+
"step": 280
|
1830 |
+
},
|
1831 |
+
{
|
1832 |
+
"completion_length": 20.976563274860382,
|
1833 |
+
"epoch": 0.1504,
|
1834 |
+
"grad_norm": 0.005935196775123734,
|
1835 |
+
"kl": 0.365234375,
|
1836 |
+
"learning_rate": 3.2373449109006474e-07,
|
1837 |
+
"loss": 0.0004,
|
1838 |
+
"reward": 0.9973958358168602,
|
1839 |
+
"reward_std": 0.007365695666521788,
|
1840 |
+
"rewards/equation_reward_func": 0.0,
|
1841 |
+
"rewards/format_reward_func": 0.9973958358168602,
|
1842 |
+
"step": 282
|
1843 |
+
},
|
1844 |
+
{
|
1845 |
+
"completion_length": 28.750000536441803,
|
1846 |
+
"epoch": 0.15146666666666667,
|
1847 |
+
"grad_norm": 0.006185835967833735,
|
1848 |
+
"kl": 0.3516845703125,
|
1849 |
+
"learning_rate": 3.1701013088304206e-07,
|
1850 |
+
"loss": 0.0004,
|
1851 |
+
"reward": 0.9973958358168602,
|
1852 |
+
"reward_std": 0.007365695666521788,
|
1853 |
+
"rewards/equation_reward_func": 0.0,
|
1854 |
+
"rewards/format_reward_func": 0.9973958358168602,
|
1855 |
+
"step": 284
|
1856 |
+
},
|
1857 |
+
{
|
1858 |
+
"completion_length": 33.2838551402092,
|
1859 |
+
"epoch": 0.15253333333333333,
|
1860 |
+
"grad_norm": 0.004000349539922501,
|
1861 |
+
"kl": 0.3592529296875,
|
1862 |
+
"learning_rate": 3.1032377266158214e-07,
|
1863 |
+
"loss": 0.0004,
|
1864 |
+
"reward": 1.0,
|
1865 |
+
"reward_std": 0.0,
|
1866 |
+
"rewards/equation_reward_func": 0.0,
|
1867 |
+
"rewards/format_reward_func": 1.0,
|
1868 |
+
"step": 286
|
1869 |
+
},
|
1870 |
+
{
|
1871 |
+
"completion_length": 25.153646647930145,
|
1872 |
+
"epoch": 0.1536,
|
1873 |
+
"grad_norm": 0.006473305213296596,
|
1874 |
+
"kl": 0.3848876953125,
|
1875 |
+
"learning_rate": 3.036768049992157e-07,
|
1876 |
+
"loss": 0.0004,
|
1877 |
+
"reward": 1.0,
|
1878 |
+
"reward_std": 0.0,
|
1879 |
+
"rewards/equation_reward_func": 0.0,
|
1880 |
+
"rewards/format_reward_func": 1.0,
|
1881 |
+
"step": 288
|
1882 |
+
},
|
1883 |
+
{
|
1884 |
+
"completion_length": 29.770834028720856,
|
1885 |
+
"epoch": 0.15466666666666667,
|
1886 |
+
"grad_norm": 0.003973211467908967,
|
1887 |
+
"kl": 0.3634033203125,
|
1888 |
+
"learning_rate": 2.9707060828913224e-07,
|
1889 |
+
"loss": 0.0004,
|
1890 |
+
"reward": 1.0,
|
1891 |
+
"reward_std": 0.0,
|
1892 |
+
"rewards/equation_reward_func": 0.0,
|
1893 |
+
"rewards/format_reward_func": 1.0,
|
1894 |
+
"step": 290
|
1895 |
+
},
|
1896 |
+
{
|
1897 |
+
"completion_length": 22.49479216337204,
|
1898 |
+
"epoch": 0.15573333333333333,
|
1899 |
+
"grad_norm": 0.00485962798897511,
|
1900 |
+
"kl": 0.3812255859375,
|
1901 |
+
"learning_rate": 2.9050655445751137e-07,
|
1902 |
+
"loss": 0.0004,
|
1903 |
+
"reward": 1.0,
|
1904 |
+
"reward_std": 0.0,
|
1905 |
+
"rewards/equation_reward_func": 0.0,
|
1906 |
+
"rewards/format_reward_func": 1.0,
|
1907 |
+
"step": 292
|
1908 |
+
},
|
1909 |
+
{
|
1910 |
+
"completion_length": 20.432292222976685,
|
1911 |
+
"epoch": 0.1568,
|
1912 |
+
"grad_norm": 0.0763280002987439,
|
1913 |
+
"kl": 0.359619140625,
|
1914 |
+
"learning_rate": 2.839860066786103e-07,
|
1915 |
+
"loss": 0.0004,
|
1916 |
+
"reward": 0.9973958358168602,
|
1917 |
+
"reward_std": 0.007365695666521788,
|
1918 |
+
"rewards/equation_reward_func": 0.0,
|
1919 |
+
"rewards/format_reward_func": 0.9973958358168602,
|
1920 |
+
"step": 294
|
1921 |
+
},
|
1922 |
+
{
|
1923 |
+
"completion_length": 22.606771171092987,
|
1924 |
+
"epoch": 0.15786666666666666,
|
1925 |
+
"grad_norm": 0.007131272098647573,
|
1926 |
+
"kl": 0.407958984375,
|
1927 |
+
"learning_rate": 2.7751031909167045e-07,
|
1928 |
+
"loss": 0.0004,
|
1929 |
+
"reward": 1.0,
|
1930 |
+
"reward_std": 0.0,
|
1931 |
+
"rewards/equation_reward_func": 0.0,
|
1932 |
+
"rewards/format_reward_func": 1.0,
|
1933 |
+
"step": 296
|
1934 |
+
},
|
1935 |
+
{
|
1936 |
+
"completion_length": 26.085938036441803,
|
1937 |
+
"epoch": 0.15893333333333334,
|
1938 |
+
"grad_norm": 0.006348176701408371,
|
1939 |
+
"kl": 0.374755859375,
|
1940 |
+
"learning_rate": 2.710808365197e-07,
|
1941 |
+
"loss": 0.0004,
|
1942 |
+
"reward": 1.0,
|
1943 |
+
"reward_std": 0.0,
|
1944 |
+
"rewards/equation_reward_func": 0.0,
|
1945 |
+
"rewards/format_reward_func": 1.0,
|
1946 |
+
"step": 298
|
1947 |
+
},
|
1948 |
+
{
|
1949 |
+
"completion_length": 28.302084028720856,
|
1950 |
+
"epoch": 0.16,
|
1951 |
+
"grad_norm": 0.00329994798018086,
|
1952 |
+
"kl": 0.357421875,
|
1953 |
+
"learning_rate": 2.646988941901898e-07,
|
1954 |
+
"loss": 0.0004,
|
1955 |
+
"reward": 1.0,
|
1956 |
+
"reward_std": 0.0,
|
1957 |
+
"rewards/equation_reward_func": 0.0,
|
1958 |
+
"rewards/format_reward_func": 1.0,
|
1959 |
+
"step": 300
|
1960 |
+
},
|
1961 |
+
{
|
1962 |
+
"completion_length": 24.33333396911621,
|
1963 |
+
"epoch": 0.16106666666666666,
|
1964 |
+
"grad_norm": 0.0041357777851463405,
|
1965 |
+
"kl": 0.3416748046875,
|
1966 |
+
"learning_rate": 2.583658174578247e-07,
|
1967 |
+
"loss": 0.0003,
|
1968 |
+
"reward": 1.0,
|
1969 |
+
"reward_std": 0.0,
|
1970 |
+
"rewards/equation_reward_func": 0.0,
|
1971 |
+
"rewards/format_reward_func": 1.0,
|
1972 |
+
"step": 302
|
1973 |
+
},
|
1974 |
+
{
|
1975 |
+
"completion_length": 21.351562976837158,
|
1976 |
+
"epoch": 0.16213333333333332,
|
1977 |
+
"grad_norm": 0.004744062593804727,
|
1978 |
+
"kl": 0.3682861328125,
|
1979 |
+
"learning_rate": 2.520829215292426e-07,
|
1980 |
+
"loss": 0.0004,
|
1981 |
+
"reward": 1.0,
|
1982 |
+
"reward_std": 0.0,
|
1983 |
+
"rewards/equation_reward_func": 0.0,
|
1984 |
+
"rewards/format_reward_func": 1.0,
|
1985 |
+
"step": 304
|
1986 |
+
},
|
1987 |
+
{
|
1988 |
+
"completion_length": 17.56510454416275,
|
1989 |
+
"epoch": 0.1632,
|
1990 |
+
"grad_norm": 0.004071588499335152,
|
1991 |
+
"kl": 0.3665771484375,
|
1992 |
+
"learning_rate": 2.4585151118990285e-07,
|
1993 |
+
"loss": 0.0004,
|
1994 |
+
"reward": 1.0,
|
1995 |
+
"reward_std": 0.0,
|
1996 |
+
"rewards/equation_reward_func": 0.0,
|
1997 |
+
"rewards/format_reward_func": 1.0,
|
1998 |
+
"step": 306
|
1999 |
+
},
|
2000 |
+
{
|
2001 |
+
"completion_length": 25.093750953674316,
|
2002 |
+
"epoch": 0.16426666666666667,
|
2003 |
+
"grad_norm": 0.003447178186189921,
|
2004 |
+
"kl": 0.3665771484375,
|
2005 |
+
"learning_rate": 2.396728805331167e-07,
|
2006 |
+
"loss": 0.0004,
|
2007 |
+
"reward": 1.0,
|
2008 |
+
"reward_std": 0.0,
|
2009 |
+
"rewards/equation_reward_func": 0.0,
|
2010 |
+
"rewards/format_reward_func": 1.0,
|
2011 |
+
"step": 308
|
2012 |
+
},
|
2013 |
+
{
|
2014 |
+
"completion_length": 39.61198019981384,
|
2015 |
+
"epoch": 0.16533333333333333,
|
2016 |
+
"grad_norm": 0.15778923141355317,
|
2017 |
+
"kl": 0.3824462890625,
|
2018 |
+
"learning_rate": 2.3354831269130132e-07,
|
2019 |
+
"loss": 0.0004,
|
2020 |
+
"reward": 0.9947916716337204,
|
2021 |
+
"reward_std": 0.014731391333043575,
|
2022 |
+
"rewards/equation_reward_func": 0.0,
|
2023 |
+
"rewards/format_reward_func": 0.9947916716337204,
|
2024 |
+
"step": 310
|
2025 |
+
},
|
2026 |
+
{
|
2027 |
+
"completion_length": 20.757813096046448,
|
2028 |
+
"epoch": 0.1664,
|
2029 |
+
"grad_norm": 0.006322854264740659,
|
2030 |
+
"kl": 0.3919677734375,
|
2031 |
+
"learning_rate": 2.2747907956950707e-07,
|
2032 |
+
"loss": 0.0004,
|
2033 |
+
"reward": 1.0,
|
2034 |
+
"reward_std": 0.0,
|
2035 |
+
"rewards/equation_reward_func": 0.0,
|
2036 |
+
"rewards/format_reward_func": 1.0,
|
2037 |
+
"step": 312
|
2038 |
+
},
|
2039 |
+
{
|
2040 |
+
"completion_length": 18.778646290302277,
|
2041 |
+
"epoch": 0.16746666666666668,
|
2042 |
+
"grad_norm": 0.004277715160452868,
|
2043 |
+
"kl": 0.3692626953125,
|
2044 |
+
"learning_rate": 2.2146644158127826e-07,
|
2045 |
+
"loss": 0.0004,
|
2046 |
+
"reward": 1.0,
|
2047 |
+
"reward_std": 0.0,
|
2048 |
+
"rewards/equation_reward_func": 0.0,
|
2049 |
+
"rewards/format_reward_func": 1.0,
|
2050 |
+
"step": 314
|
2051 |
+
},
|
2052 |
+
{
|
2053 |
+
"completion_length": 22.914063036441803,
|
2054 |
+
"epoch": 0.16853333333333334,
|
2055 |
+
"grad_norm": 0.005925839314806503,
|
2056 |
+
"kl": 0.3868408203125,
|
2057 |
+
"learning_rate": 2.1551164738689892e-07,
|
2058 |
+
"loss": 0.0004,
|
2059 |
+
"reward": 1.0,
|
2060 |
+
"reward_std": 0.0,
|
2061 |
+
"rewards/equation_reward_func": 0.0,
|
2062 |
+
"rewards/format_reward_func": 1.0,
|
2063 |
+
"step": 316
|
2064 |
+
},
|
2065 |
+
{
|
2066 |
+
"completion_length": 19.528646647930145,
|
2067 |
+
"epoch": 0.1696,
|
2068 |
+
"grad_norm": 0.004034463075140326,
|
2069 |
+
"kl": 0.3629150390625,
|
2070 |
+
"learning_rate": 2.0961593363408154e-07,
|
2071 |
+
"loss": 0.0004,
|
2072 |
+
"reward": 1.0,
|
2073 |
+
"reward_std": 0.0,
|
2074 |
+
"rewards/equation_reward_func": 0.0,
|
2075 |
+
"rewards/format_reward_func": 1.0,
|
2076 |
+
"step": 318
|
2077 |
+
},
|
2078 |
+
{
|
2079 |
+
"completion_length": 26.062500655651093,
|
2080 |
+
"epoch": 0.17066666666666666,
|
2081 |
+
"grad_norm": 0.003874147172074953,
|
2082 |
+
"kl": 0.3551025390625,
|
2083 |
+
"learning_rate": 2.037805247011482e-07,
|
2084 |
+
"loss": 0.0004,
|
2085 |
+
"reward": 1.0,
|
2086 |
+
"reward_std": 0.0,
|
2087 |
+
"rewards/equation_reward_func": 0.0,
|
2088 |
+
"rewards/format_reward_func": 1.0,
|
2089 |
+
"step": 320
|
2090 |
+
},
|
2091 |
+
{
|
2092 |
+
"completion_length": 22.450521290302277,
|
2093 |
+
"epoch": 0.17173333333333332,
|
2094 |
+
"grad_norm": 0.0036545323789303995,
|
2095 |
+
"kl": 0.3665771484375,
|
2096 |
+
"learning_rate": 1.9800663244276127e-07,
|
2097 |
+
"loss": 0.0004,
|
2098 |
+
"reward": 1.0,
|
2099 |
+
"reward_std": 0.0,
|
2100 |
+
"rewards/equation_reward_func": 0.0,
|
2101 |
+
"rewards/format_reward_func": 1.0,
|
2102 |
+
"step": 322
|
2103 |
+
},
|
2104 |
+
{
|
2105 |
+
"completion_length": 33.1458340883255,
|
2106 |
+
"epoch": 0.1728,
|
2107 |
+
"grad_norm": 0.006124961025482053,
|
2108 |
+
"kl": 0.358642578125,
|
2109 |
+
"learning_rate": 1.9229545593825363e-07,
|
2110 |
+
"loss": 0.0004,
|
2111 |
+
"reward": 0.9973958358168602,
|
2112 |
+
"reward_std": 0.007365695666521788,
|
2113 |
+
"rewards/equation_reward_func": 0.0,
|
2114 |
+
"rewards/format_reward_func": 0.9973958358168602,
|
2115 |
+
"step": 324
|
2116 |
+
},
|
2117 |
+
{
|
2118 |
+
"completion_length": 25.63541728258133,
|
2119 |
+
"epoch": 0.17386666666666667,
|
2120 |
+
"grad_norm": 0.004330409449251065,
|
2121 |
+
"kl": 0.38134765625,
|
2122 |
+
"learning_rate": 1.8664818124261373e-07,
|
2123 |
+
"loss": 0.0004,
|
2124 |
+
"reward": 1.0,
|
2125 |
+
"reward_std": 0.0,
|
2126 |
+
"rewards/equation_reward_func": 0.0,
|
2127 |
+
"rewards/format_reward_func": 1.0,
|
2128 |
+
"step": 326
|
2129 |
+
},
|
2130 |
+
{
|
2131 |
+
"completion_length": 30.52343863248825,
|
2132 |
+
"epoch": 0.17493333333333333,
|
2133 |
+
"grad_norm": 0.004429155190479566,
|
2134 |
+
"kl": 0.3779296875,
|
2135 |
+
"learning_rate": 1.8106598114017397e-07,
|
2136 |
+
"loss": 0.0004,
|
2137 |
+
"reward": 1.0,
|
2138 |
+
"reward_std": 0.0,
|
2139 |
+
"rewards/equation_reward_func": 0.0,
|
2140 |
+
"rewards/format_reward_func": 1.0,
|
2141 |
+
"step": 328
|
2142 |
+
},
|
2143 |
+
{
|
2144 |
+
"completion_length": 29.343750715255737,
|
2145 |
+
"epoch": 0.176,
|
2146 |
+
"grad_norm": 0.004794753409205765,
|
2147 |
+
"kl": 0.361083984375,
|
2148 |
+
"learning_rate": 1.7555001490105486e-07,
|
2149 |
+
"loss": 0.0004,
|
2150 |
+
"reward": 1.0,
|
2151 |
+
"reward_std": 0.0,
|
2152 |
+
"rewards/equation_reward_func": 0.0,
|
2153 |
+
"rewards/format_reward_func": 1.0,
|
2154 |
+
"step": 330
|
2155 |
+
},
|
2156 |
+
{
|
2157 |
+
"completion_length": 28.692708909511566,
|
2158 |
+
"epoch": 0.17706666666666668,
|
2159 |
+
"grad_norm": 0.005714723884457156,
|
2160 |
+
"kl": 0.3719482421875,
|
2161 |
+
"learning_rate": 1.7010142804041783e-07,
|
2162 |
+
"loss": 0.0004,
|
2163 |
+
"reward": 1.0,
|
2164 |
+
"reward_std": 0.0,
|
2165 |
+
"rewards/equation_reward_func": 0.0,
|
2166 |
+
"rewards/format_reward_func": 1.0,
|
2167 |
+
"step": 332
|
2168 |
+
},
|
2169 |
+
{
|
2170 |
+
"completion_length": 24.77864646911621,
|
2171 |
+
"epoch": 0.17813333333333334,
|
2172 |
+
"grad_norm": 0.004745602217539158,
|
2173 |
+
"kl": 0.35888671875,
|
2174 |
+
"learning_rate": 1.6472135208057125e-07,
|
2175 |
+
"loss": 0.0004,
|
2176 |
+
"reward": 1.0,
|
2177 |
+
"reward_std": 0.0,
|
2178 |
+
"rewards/equation_reward_func": 0.0,
|
2179 |
+
"rewards/format_reward_func": 1.0,
|
2180 |
+
"step": 334
|
2181 |
+
},
|
2182 |
+
{
|
2183 |
+
"completion_length": 30.609375655651093,
|
2184 |
+
"epoch": 0.1792,
|
2185 |
+
"grad_norm": 0.004920986126883945,
|
2186 |
+
"kl": 0.380126953125,
|
2187 |
+
"learning_rate": 1.5941090431598653e-07,
|
2188 |
+
"loss": 0.0004,
|
2189 |
+
"reward": 1.0,
|
2190 |
+
"reward_std": 0.0,
|
2191 |
+
"rewards/equation_reward_func": 0.0,
|
2192 |
+
"rewards/format_reward_func": 1.0,
|
2193 |
+
"step": 336
|
2194 |
+
},
|
2195 |
+
{
|
2196 |
+
"completion_length": 32.19010490179062,
|
2197 |
+
"epoch": 0.18026666666666666,
|
2198 |
+
"grad_norm": 0.004022967836188304,
|
2199 |
+
"kl": 0.3558349609375,
|
2200 |
+
"learning_rate": 1.5417118758126408e-07,
|
2201 |
+
"loss": 0.0004,
|
2202 |
+
"reward": 1.0,
|
2203 |
+
"reward_std": 0.0,
|
2204 |
+
"rewards/equation_reward_func": 0.0,
|
2205 |
+
"rewards/format_reward_func": 1.0,
|
2206 |
+
"step": 338
|
2207 |
+
},
|
2208 |
+
{
|
2209 |
+
"completion_length": 28.093750953674316,
|
2210 |
+
"epoch": 0.18133333333333335,
|
2211 |
+
"grad_norm": 0.003832900467363359,
|
2212 |
+
"kl": 0.3629150390625,
|
2213 |
+
"learning_rate": 1.490032900221068e-07,
|
2214 |
+
"loss": 0.0004,
|
2215 |
+
"reward": 1.0,
|
2216 |
+
"reward_std": 0.0,
|
2217 |
+
"rewards/equation_reward_func": 0.0,
|
2218 |
+
"rewards/format_reward_func": 1.0,
|
2219 |
+
"step": 340
|
2220 |
+
},
|
2221 |
+
{
|
2222 |
+
"completion_length": 28.463542699813843,
|
2223 |
+
"epoch": 0.1824,
|
2224 |
+
"grad_norm": 0.005487525138346315,
|
2225 |
+
"kl": 0.3526611328125,
|
2226 |
+
"learning_rate": 1.4390828486934058e-07,
|
2227 |
+
"loss": 0.0004,
|
2228 |
+
"reward": 1.0,
|
2229 |
+
"reward_std": 0.0,
|
2230 |
+
"rewards/equation_reward_func": 0.0,
|
2231 |
+
"rewards/format_reward_func": 1.0,
|
2232 |
+
"step": 342
|
2233 |
+
},
|
2234 |
+
{
|
2235 |
+
"completion_length": 24.825521528720856,
|
2236 |
+
"epoch": 0.18346666666666667,
|
2237 |
+
"grad_norm": 0.0031850458946458297,
|
2238 |
+
"kl": 0.36962890625,
|
2239 |
+
"learning_rate": 1.3888723021603526e-07,
|
2240 |
+
"loss": 0.0004,
|
2241 |
+
"reward": 1.0,
|
2242 |
+
"reward_std": 0.0,
|
2243 |
+
"rewards/equation_reward_func": 0.0,
|
2244 |
+
"rewards/format_reward_func": 1.0,
|
2245 |
+
"step": 344
|
2246 |
+
},
|
2247 |
+
{
|
2248 |
+
"completion_length": 42.6744801402092,
|
2249 |
+
"epoch": 0.18453333333333333,
|
2250 |
+
"grad_norm": 0.0035741821948086553,
|
2251 |
+
"kl": 0.34521484375,
|
2252 |
+
"learning_rate": 1.3394116879776567e-07,
|
2253 |
+
"loss": 0.0003,
|
2254 |
+
"reward": 1.0,
|
2255 |
+
"reward_std": 0.0,
|
2256 |
+
"rewards/equation_reward_func": 0.0,
|
2257 |
+
"rewards/format_reward_func": 1.0,
|
2258 |
+
"step": 346
|
2259 |
+
},
|
2260 |
+
{
|
2261 |
+
"completion_length": 32.55729299783707,
|
2262 |
+
"epoch": 0.1856,
|
2263 |
+
"grad_norm": 0.0047430778934828615,
|
2264 |
+
"kl": 0.3699951171875,
|
2265 |
+
"learning_rate": 1.2907112777606576e-07,
|
2266 |
+
"loss": 0.0004,
|
2267 |
+
"reward": 1.0,
|
2268 |
+
"reward_std": 0.0,
|
2269 |
+
"rewards/equation_reward_func": 0.0,
|
2270 |
+
"rewards/format_reward_func": 1.0,
|
2271 |
+
"step": 348
|
2272 |
+
},
|
2273 |
+
{
|
2274 |
+
"completion_length": 32.25260508060455,
|
2275 |
+
"epoch": 0.18666666666666668,
|
2276 |
+
"grad_norm": 0.003936651676485424,
|
2277 |
+
"kl": 0.3486328125,
|
2278 |
+
"learning_rate": 1.2427811852511395e-07,
|
2279 |
+
"loss": 0.0003,
|
2280 |
+
"reward": 1.0,
|
2281 |
+
"reward_std": 0.0,
|
2282 |
+
"rewards/equation_reward_func": 0.0,
|
2283 |
+
"rewards/format_reward_func": 1.0,
|
2284 |
+
"step": 350
|
2285 |
+
},
|
2286 |
+
{
|
2287 |
+
"completion_length": 30.427084147930145,
|
2288 |
+
"epoch": 0.18773333333333334,
|
2289 |
+
"grad_norm": 0.0023807576550031397,
|
2290 |
+
"kl": 0.3360595703125,
|
2291 |
+
"learning_rate": 1.1956313642169973e-07,
|
2292 |
+
"loss": 0.0003,
|
2293 |
+
"reward": 1.0,
|
2294 |
+
"reward_std": 0.0,
|
2295 |
+
"rewards/equation_reward_func": 0.0,
|
2296 |
+
"rewards/format_reward_func": 1.0,
|
2297 |
+
"step": 352
|
2298 |
+
},
|
2299 |
+
{
|
2300 |
+
"completion_length": 34.77864670753479,
|
2301 |
+
"epoch": 0.1888,
|
2302 |
+
"grad_norm": 0.15089837821656296,
|
2303 |
+
"kl": 0.34228515625,
|
2304 |
+
"learning_rate": 1.1492716063850971e-07,
|
2305 |
+
"loss": 0.0003,
|
2306 |
+
"reward": 0.9973958358168602,
|
2307 |
+
"reward_std": 0.007365695666521788,
|
2308 |
+
"rewards/equation_reward_func": 0.0,
|
2309 |
+
"rewards/format_reward_func": 0.9973958358168602,
|
2310 |
+
"step": 354
|
2311 |
+
},
|
2312 |
+
{
|
2313 |
+
"completion_length": 25.59895896911621,
|
2314 |
+
"epoch": 0.18986666666666666,
|
2315 |
+
"grad_norm": 0.004901087575209092,
|
2316 |
+
"kl": 0.3863525390625,
|
2317 |
+
"learning_rate": 1.1037115394078162e-07,
|
2318 |
+
"loss": 0.0004,
|
2319 |
+
"reward": 1.0,
|
2320 |
+
"reward_std": 0.0,
|
2321 |
+
"rewards/equation_reward_func": 0.0,
|
2322 |
+
"rewards/format_reward_func": 1.0,
|
2323 |
+
"step": 356
|
2324 |
+
},
|
2325 |
+
{
|
2326 |
+
"completion_length": 27.411459028720856,
|
2327 |
+
"epoch": 0.19093333333333334,
|
2328 |
+
"grad_norm": 0.2515997335919245,
|
2329 |
+
"kl": 0.415283203125,
|
2330 |
+
"learning_rate": 1.058960624863629e-07,
|
2331 |
+
"loss": 0.0004,
|
2332 |
+
"reward": 0.9947916716337204,
|
2333 |
+
"reward_std": 0.014731391333043575,
|
2334 |
+
"rewards/equation_reward_func": 0.0,
|
2335 |
+
"rewards/format_reward_func": 0.9947916716337204,
|
2336 |
+
"step": 358
|
2337 |
+
},
|
2338 |
+
{
|
2339 |
+
"completion_length": 24.864584028720856,
|
2340 |
+
"epoch": 0.192,
|
2341 |
+
"grad_norm": 0.0046814573951274975,
|
2342 |
+
"kl": 0.3677978515625,
|
2343 |
+
"learning_rate": 1.015028156292212e-07,
|
2344 |
+
"loss": 0.0004,
|
2345 |
+
"reward": 1.0,
|
2346 |
+
"reward_std": 0.0,
|
2347 |
+
"rewards/equation_reward_func": 0.0,
|
2348 |
+
"rewards/format_reward_func": 1.0,
|
2349 |
+
"step": 360
|
2350 |
+
},
|
2351 |
+
{
|
2352 |
+
"completion_length": 26.3255215883255,
|
2353 |
+
"epoch": 0.19306666666666666,
|
2354 |
+
"grad_norm": 0.003523171914321313,
|
2355 |
+
"kl": 0.3526611328125,
|
2356 |
+
"learning_rate": 9.719232572644187e-08,
|
2357 |
+
"loss": 0.0004,
|
2358 |
+
"reward": 1.0,
|
2359 |
+
"reward_std": 0.0,
|
2360 |
+
"rewards/equation_reward_func": 0.0,
|
2361 |
+
"rewards/format_reward_func": 1.0,
|
2362 |
+
"step": 362
|
2363 |
+
},
|
2364 |
+
{
|
2365 |
+
"completion_length": 17.119792222976685,
|
2366 |
+
"epoch": 0.19413333333333332,
|
2367 |
+
"grad_norm": 0.0033418329191399116,
|
2368 |
+
"kl": 0.3404541015625,
|
2369 |
+
"learning_rate": 9.296548794875658e-08,
|
2370 |
+
"loss": 0.0003,
|
2371 |
+
"reward": 1.0,
|
2372 |
+
"reward_std": 0.0,
|
2373 |
+
"rewards/equation_reward_func": 0.0,
|
2374 |
+
"rewards/format_reward_func": 1.0,
|
2375 |
+
"step": 364
|
2376 |
+
},
|
2377 |
+
{
|
2378 |
+
"completion_length": 23.22135478258133,
|
2379 |
+
"epoch": 0.1952,
|
2380 |
+
"grad_norm": 0.003827547965209838,
|
2381 |
+
"kl": 0.3699951171875,
|
2382 |
+
"learning_rate": 8.882318009464123e-08,
|
2383 |
+
"loss": 0.0004,
|
2384 |
+
"reward": 1.0,
|
2385 |
+
"reward_std": 0.0,
|
2386 |
+
"rewards/equation_reward_func": 0.0,
|
2387 |
+
"rewards/format_reward_func": 1.0,
|
2388 |
+
"step": 366
|
2389 |
+
},
|
2390 |
+
{
|
2391 |
+
"completion_length": 25.372396528720856,
|
2392 |
+
"epoch": 0.19626666666666667,
|
2393 |
+
"grad_norm": 0.005771301327474302,
|
2394 |
+
"kl": 0.390869140625,
|
2395 |
+
"learning_rate": 8.476626240802099e-08,
|
2396 |
+
"loss": 0.0004,
|
2397 |
+
"reward": 1.0,
|
2398 |
+
"reward_std": 0.0,
|
2399 |
+
"rewards/equation_reward_func": 0.0,
|
2400 |
+
"rewards/format_reward_func": 1.0,
|
2401 |
+
"step": 368
|
2402 |
+
},
|
2403 |
+
{
|
2404 |
+
"completion_length": 28.466146528720856,
|
2405 |
+
"epoch": 0.19733333333333333,
|
2406 |
+
"grad_norm": 0.005304014054373385,
|
2407 |
+
"kl": 0.3919677734375,
|
2408 |
+
"learning_rate": 8.079557739962128e-08,
|
2409 |
+
"loss": 0.0004,
|
2410 |
+
"reward": 0.9973958358168602,
|
2411 |
+
"reward_std": 0.007365695666521788,
|
2412 |
+
"rewards/equation_reward_func": 0.0,
|
2413 |
+
"rewards/format_reward_func": 0.9973958358168602,
|
2414 |
+
"step": 370
|
2415 |
+
},
|
2416 |
+
{
|
2417 |
+
"completion_length": 28.109375596046448,
|
2418 |
+
"epoch": 0.1984,
|
2419 |
+
"grad_norm": 0.008746822168976117,
|
2420 |
+
"kl": 0.381591796875,
|
2421 |
+
"learning_rate": 7.691194967200098e-08,
|
2422 |
+
"loss": 0.0004,
|
2423 |
+
"reward": 1.0,
|
2424 |
+
"reward_std": 0.0,
|
2425 |
+
"rewards/equation_reward_func": 0.0,
|
2426 |
+
"rewards/format_reward_func": 1.0,
|
2427 |
+
"step": 372
|
2428 |
+
},
|
2429 |
+
{
|
2430 |
+
"completion_length": 29.783854722976685,
|
2431 |
+
"epoch": 0.19946666666666665,
|
2432 |
+
"grad_norm": 0.003852702379103747,
|
2433 |
+
"kl": 0.3544921875,
|
2434 |
+
"learning_rate": 7.311618574830569e-08,
|
2435 |
+
"loss": 0.0004,
|
2436 |
+
"reward": 1.0,
|
2437 |
+
"reward_std": 0.0,
|
2438 |
+
"rewards/equation_reward_func": 0.0,
|
2439 |
+
"rewards/format_reward_func": 1.0,
|
2440 |
+
"step": 374
|
2441 |
+
},
|
2442 |
+
{
|
2443 |
+
"completion_length": 37.625001072883606,
|
2444 |
+
"epoch": 0.20053333333333334,
|
2445 |
+
"grad_norm": 0.006486759121452462,
|
2446 |
+
"kl": 0.382568359375,
|
2447 |
+
"learning_rate": 6.940907390477457e-08,
|
2448 |
+
"loss": 0.0004,
|
2449 |
+
"reward": 1.0,
|
2450 |
+
"reward_std": 0.0,
|
2451 |
+
"rewards/equation_reward_func": 0.0,
|
2452 |
+
"rewards/format_reward_func": 1.0,
|
2453 |
+
"step": 376
|
2454 |
+
},
|
2455 |
+
{
|
2456 |
+
"completion_length": 22.640625834465027,
|
2457 |
+
"epoch": 0.2016,
|
2458 |
+
"grad_norm": 0.005855790645544301,
|
2459 |
+
"kl": 0.3614501953125,
|
2460 |
+
"learning_rate": 6.579138400703715e-08,
|
2461 |
+
"loss": 0.0004,
|
2462 |
+
"reward": 1.0,
|
2463 |
+
"reward_std": 0.0,
|
2464 |
+
"rewards/equation_reward_func": 0.0,
|
2465 |
+
"rewards/format_reward_func": 1.0,
|
2466 |
+
"step": 378
|
2467 |
+
},
|
2468 |
+
{
|
2469 |
+
"completion_length": 33.35937559604645,
|
2470 |
+
"epoch": 0.20266666666666666,
|
2471 |
+
"grad_norm": 0.0045352649165850195,
|
2472 |
+
"kl": 0.3572998046875,
|
2473 |
+
"learning_rate": 6.22638673502327e-08,
|
2474 |
+
"loss": 0.0004,
|
2475 |
+
"reward": 1.0,
|
2476 |
+
"reward_std": 0.0,
|
2477 |
+
"rewards/equation_reward_func": 0.0,
|
2478 |
+
"rewards/format_reward_func": 1.0,
|
2479 |
+
"step": 380
|
2480 |
+
},
|
2481 |
+
{
|
2482 |
+
"completion_length": 37.419271528720856,
|
2483 |
+
"epoch": 0.20373333333333332,
|
2484 |
+
"grad_norm": 0.0055192004314618985,
|
2485 |
+
"kl": 0.3720703125,
|
2486 |
+
"learning_rate": 5.882725650298787e-08,
|
2487 |
+
"loss": 0.0004,
|
2488 |
+
"reward": 1.0,
|
2489 |
+
"reward_std": 0.0,
|
2490 |
+
"rewards/equation_reward_func": 0.0,
|
2491 |
+
"rewards/format_reward_func": 1.0,
|
2492 |
+
"step": 382
|
2493 |
+
},
|
2494 |
+
{
|
2495 |
+
"completion_length": 35.075521647930145,
|
2496 |
+
"epoch": 0.2048,
|
2497 |
+
"grad_norm": 0.00906841179693692,
|
2498 |
+
"kl": 0.388671875,
|
2499 |
+
"learning_rate": 5.548226515528132e-08,
|
2500 |
+
"loss": 0.0004,
|
2501 |
+
"reward": 1.0,
|
2502 |
+
"reward_std": 0.0,
|
2503 |
+
"rewards/equation_reward_func": 0.0,
|
2504 |
+
"rewards/format_reward_func": 1.0,
|
2505 |
+
"step": 384
|
2506 |
+
},
|
2507 |
+
{
|
2508 |
+
"completion_length": 44.68489694595337,
|
2509 |
+
"epoch": 0.20586666666666667,
|
2510 |
+
"grad_norm": 0.005997242826384812,
|
2511 |
+
"kl": 0.363037109375,
|
2512 |
+
"learning_rate": 5.222958797023036e-08,
|
2513 |
+
"loss": 0.0004,
|
2514 |
+
"reward": 1.0,
|
2515 |
+
"reward_std": 0.0,
|
2516 |
+
"rewards/equation_reward_func": 0.0,
|
2517 |
+
"rewards/format_reward_func": 1.0,
|
2518 |
+
"step": 386
|
2519 |
+
},
|
2520 |
+
{
|
2521 |
+
"completion_length": 36.622397005558014,
|
2522 |
+
"epoch": 0.20693333333333333,
|
2523 |
+
"grad_norm": 0.10183351032451872,
|
2524 |
+
"kl": 0.375244140625,
|
2525 |
+
"learning_rate": 4.9069900439828115e-08,
|
2526 |
+
"loss": 0.0004,
|
2527 |
+
"reward": 0.9973958358168602,
|
2528 |
+
"reward_std": 0.007365695666521788,
|
2529 |
+
"rewards/equation_reward_func": 0.0,
|
2530 |
+
"rewards/format_reward_func": 0.9973958358168602,
|
2531 |
+
"step": 388
|
2532 |
+
},
|
2533 |
+
{
|
2534 |
+
"completion_length": 27.940105140209198,
|
2535 |
+
"epoch": 0.208,
|
2536 |
+
"grad_norm": 0.006355436428529637,
|
2537 |
+
"kl": 0.3638916015625,
|
2538 |
+
"learning_rate": 4.600385874466256e-08,
|
2539 |
+
"loss": 0.0004,
|
2540 |
+
"reward": 1.0,
|
2541 |
+
"reward_std": 0.0,
|
2542 |
+
"rewards/equation_reward_func": 0.0,
|
2543 |
+
"rewards/format_reward_func": 1.0,
|
2544 |
+
"step": 390
|
2545 |
+
},
|
2546 |
+
{
|
2547 |
+
"completion_length": 26.825521230697632,
|
2548 |
+
"epoch": 0.20906666666666668,
|
2549 |
+
"grad_norm": 0.005474495697015851,
|
2550 |
+
"kl": 0.3861083984375,
|
2551 |
+
"learning_rate": 4.303209961764587e-08,
|
2552 |
+
"loss": 0.0004,
|
2553 |
+
"reward": 1.0,
|
2554 |
+
"reward_std": 0.0,
|
2555 |
+
"rewards/equation_reward_func": 0.0,
|
2556 |
+
"rewards/format_reward_func": 1.0,
|
2557 |
+
"step": 392
|
2558 |
+
},
|
2559 |
+
{
|
2560 |
+
"completion_length": 43.97395968437195,
|
2561 |
+
"epoch": 0.21013333333333334,
|
2562 |
+
"grad_norm": 0.0034248967357224185,
|
2563 |
+
"kl": 0.3330078125,
|
2564 |
+
"learning_rate": 4.015524021178196e-08,
|
2565 |
+
"loss": 0.0003,
|
2566 |
+
"reward": 1.0,
|
2567 |
+
"reward_std": 0.0,
|
2568 |
+
"rewards/equation_reward_func": 0.0,
|
2569 |
+
"rewards/format_reward_func": 1.0,
|
2570 |
+
"step": 394
|
2571 |
+
},
|
2572 |
+
{
|
2573 |
+
"completion_length": 33.33333444595337,
|
2574 |
+
"epoch": 0.2112,
|
2575 |
+
"grad_norm": 0.006434693223212768,
|
2576 |
+
"kl": 0.3935546875,
|
2577 |
+
"learning_rate": 3.7373877972001255e-08,
|
2578 |
+
"loss": 0.0004,
|
2579 |
+
"reward": 1.0,
|
2580 |
+
"reward_std": 0.0,
|
2581 |
+
"rewards/equation_reward_func": 0.0,
|
2582 |
+
"rewards/format_reward_func": 1.0,
|
2583 |
+
"step": 396
|
2584 |
+
},
|
2585 |
+
{
|
2586 |
+
"completion_length": 32.841146647930145,
|
2587 |
+
"epoch": 0.21226666666666666,
|
2588 |
+
"grad_norm": 0.004929606396670415,
|
2589 |
+
"kl": 0.3687744140625,
|
2590 |
+
"learning_rate": 3.46885905110873e-08,
|
2591 |
+
"loss": 0.0004,
|
2592 |
+
"reward": 1.0,
|
2593 |
+
"reward_std": 0.0,
|
2594 |
+
"rewards/equation_reward_func": 0.0,
|
2595 |
+
"rewards/format_reward_func": 1.0,
|
2596 |
+
"step": 398
|
2597 |
+
},
|
2598 |
+
{
|
2599 |
+
"completion_length": 25.093750596046448,
|
2600 |
+
"epoch": 0.21333333333333335,
|
2601 |
+
"grad_norm": 0.005791877214539501,
|
2602 |
+
"kl": 0.3695068359375,
|
2603 |
+
"learning_rate": 3.20999354897229e-08,
|
2604 |
+
"loss": 0.0004,
|
2605 |
+
"reward": 1.0,
|
2606 |
+
"reward_std": 0.0,
|
2607 |
+
"rewards/equation_reward_func": 0.0,
|
2608 |
+
"rewards/format_reward_func": 1.0,
|
2609 |
+
"step": 400
|
2610 |
+
},
|
2611 |
+
{
|
2612 |
+
"completion_length": 32.02604269981384,
|
2613 |
+
"epoch": 0.2144,
|
2614 |
+
"grad_norm": 0.005202107306989119,
|
2615 |
+
"kl": 0.3798828125,
|
2616 |
+
"learning_rate": 2.9608450500678562e-08,
|
2617 |
+
"loss": 0.0004,
|
2618 |
+
"reward": 1.0,
|
2619 |
+
"reward_std": 0.0,
|
2620 |
+
"rewards/equation_reward_func": 0.0,
|
2621 |
+
"rewards/format_reward_func": 1.0,
|
2622 |
+
"step": 402
|
2623 |
+
},
|
2624 |
+
{
|
2625 |
+
"completion_length": 27.648438274860382,
|
2626 |
+
"epoch": 0.21546666666666667,
|
2627 |
+
"grad_norm": 0.005371398662773084,
|
2628 |
+
"kl": 0.3856201171875,
|
2629 |
+
"learning_rate": 2.721465295716996e-08,
|
2630 |
+
"loss": 0.0004,
|
2631 |
+
"reward": 1.0,
|
2632 |
+
"reward_std": 0.0,
|
2633 |
+
"rewards/equation_reward_func": 0.0,
|
2634 |
+
"rewards/format_reward_func": 1.0,
|
2635 |
+
"step": 404
|
2636 |
+
},
|
2637 |
+
{
|
2638 |
+
"completion_length": 27.742188096046448,
|
2639 |
+
"epoch": 0.21653333333333333,
|
2640 |
+
"grad_norm": 0.006378137301419084,
|
2641 |
+
"kl": 0.3594970703125,
|
2642 |
+
"learning_rate": 2.4919039985404622e-08,
|
2643 |
+
"loss": 0.0004,
|
2644 |
+
"reward": 1.0,
|
2645 |
+
"reward_std": 0.0,
|
2646 |
+
"rewards/equation_reward_func": 0.0,
|
2647 |
+
"rewards/format_reward_func": 1.0,
|
2648 |
+
"step": 406
|
2649 |
+
},
|
2650 |
+
{
|
2651 |
+
"completion_length": 24.539063334465027,
|
2652 |
+
"epoch": 0.2176,
|
2653 |
+
"grad_norm": 0.006280450050690689,
|
2654 |
+
"kl": 0.3812255859375,
|
2655 |
+
"learning_rate": 2.2722088321343258e-08,
|
2656 |
+
"loss": 0.0004,
|
2657 |
+
"reward": 1.0,
|
2658 |
+
"reward_std": 0.0,
|
2659 |
+
"rewards/equation_reward_func": 0.0,
|
2660 |
+
"rewards/format_reward_func": 1.0,
|
2661 |
+
"step": 408
|
2662 |
+
},
|
2663 |
+
{
|
2664 |
+
"completion_length": 29.023438096046448,
|
2665 |
+
"epoch": 0.21866666666666668,
|
2666 |
+
"grad_norm": 0.007309421154996187,
|
2667 |
+
"kl": 0.390380859375,
|
2668 |
+
"learning_rate": 2.0624254211693894e-08,
|
2669 |
+
"loss": 0.0004,
|
2670 |
+
"reward": 1.0,
|
2671 |
+
"reward_std": 0.0,
|
2672 |
+
"rewards/equation_reward_func": 0.0,
|
2673 |
+
"rewards/format_reward_func": 1.0,
|
2674 |
+
"step": 410
|
2675 |
+
},
|
2676 |
+
{
|
2677 |
+
"completion_length": 27.057292222976685,
|
2678 |
+
"epoch": 0.21973333333333334,
|
2679 |
+
"grad_norm": 0.004269729933642793,
|
2680 |
+
"kl": 0.3533935546875,
|
2681 |
+
"learning_rate": 1.8625973319162602e-08,
|
2682 |
+
"loss": 0.0004,
|
2683 |
+
"reward": 1.0,
|
2684 |
+
"reward_std": 0.0,
|
2685 |
+
"rewards/equation_reward_func": 0.0,
|
2686 |
+
"rewards/format_reward_func": 1.0,
|
2687 |
+
"step": 412
|
2688 |
+
},
|
2689 |
+
{
|
2690 |
+
"completion_length": 29.026042342185974,
|
2691 |
+
"epoch": 0.2208,
|
2692 |
+
"grad_norm": 0.0076460713410529055,
|
2693 |
+
"kl": 0.4102783203125,
|
2694 |
+
"learning_rate": 1.672766063197789e-08,
|
2695 |
+
"loss": 0.0004,
|
2696 |
+
"reward": 0.9973958358168602,
|
2697 |
+
"reward_std": 0.007365695666521788,
|
2698 |
+
"rewards/equation_reward_func": 0.0,
|
2699 |
+
"rewards/format_reward_func": 0.9973958358168602,
|
2700 |
+
"step": 414
|
2701 |
+
},
|
2702 |
+
{
|
2703 |
+
"completion_length": 39.75000101327896,
|
2704 |
+
"epoch": 0.22186666666666666,
|
2705 |
+
"grad_norm": 0.00506495764972648,
|
2706 |
+
"kl": 0.365234375,
|
2707 |
+
"learning_rate": 1.492971037770924e-08,
|
2708 |
+
"loss": 0.0004,
|
2709 |
+
"reward": 1.0,
|
2710 |
+
"reward_std": 0.0,
|
2711 |
+
"rewards/equation_reward_func": 0.0,
|
2712 |
+
"rewards/format_reward_func": 1.0,
|
2713 |
+
"step": 416
|
2714 |
+
},
|
2715 |
+
{
|
2716 |
+
"completion_length": 24.554688572883606,
|
2717 |
+
"epoch": 0.22293333333333334,
|
2718 |
+
"grad_norm": 0.003635383901655059,
|
2719 |
+
"kl": 0.356689453125,
|
2720 |
+
"learning_rate": 1.3232495941396637e-08,
|
2721 |
+
"loss": 0.0004,
|
2722 |
+
"reward": 1.0,
|
2723 |
+
"reward_std": 0.0,
|
2724 |
+
"rewards/equation_reward_func": 0.0,
|
2725 |
+
"rewards/format_reward_func": 1.0,
|
2726 |
+
"step": 418
|
2727 |
+
},
|
2728 |
+
{
|
2729 |
+
"completion_length": 27.872396171092987,
|
2730 |
+
"epoch": 0.224,
|
2731 |
+
"grad_norm": 0.005264483567820246,
|
2732 |
+
"kl": 0.374755859375,
|
2733 |
+
"learning_rate": 1.1636369788008971e-08,
|
2734 |
+
"loss": 0.0004,
|
2735 |
+
"reward": 1.0,
|
2736 |
+
"reward_std": 0.0,
|
2737 |
+
"rewards/equation_reward_func": 0.0,
|
2738 |
+
"rewards/format_reward_func": 1.0,
|
2739 |
+
"step": 420
|
2740 |
+
},
|
2741 |
+
{
|
2742 |
+
"completion_length": 26.59114670753479,
|
2743 |
+
"epoch": 0.22506666666666666,
|
2744 |
+
"grad_norm": 0.0037470230331634537,
|
2745 |
+
"kl": 0.3553466796875,
|
2746 |
+
"learning_rate": 1.014166338924627e-08,
|
2747 |
+
"loss": 0.0004,
|
2748 |
+
"reward": 1.0,
|
2749 |
+
"reward_std": 0.0,
|
2750 |
+
"rewards/equation_reward_func": 0.0,
|
2751 |
+
"rewards/format_reward_func": 1.0,
|
2752 |
+
"step": 422
|
2753 |
+
},
|
2754 |
+
{
|
2755 |
+
"completion_length": 26.52343863248825,
|
2756 |
+
"epoch": 0.22613333333333333,
|
2757 |
+
"grad_norm": 0.0050309925811448716,
|
2758 |
+
"kl": 0.371826171875,
|
2759 |
+
"learning_rate": 8.748687154702672e-09,
|
2760 |
+
"loss": 0.0004,
|
2761 |
+
"reward": 1.0,
|
2762 |
+
"reward_std": 0.0,
|
2763 |
+
"rewards/equation_reward_func": 0.0,
|
2764 |
+
"rewards/format_reward_func": 1.0,
|
2765 |
+
"step": 424
|
2766 |
+
},
|
2767 |
+
{
|
2768 |
+
"completion_length": 42.177085161209106,
|
2769 |
+
"epoch": 0.2272,
|
2770 |
+
"grad_norm": 0.004690685442083978,
|
2771 |
+
"kl": 0.3511962890625,
|
2772 |
+
"learning_rate": 7.457730367402549e-09,
|
2773 |
+
"loss": 0.0004,
|
2774 |
+
"reward": 1.0,
|
2775 |
+
"reward_std": 0.0,
|
2776 |
+
"rewards/equation_reward_func": 0.0,
|
2777 |
+
"rewards/format_reward_func": 1.0,
|
2778 |
+
"step": 426
|
2779 |
+
},
|
2780 |
+
{
|
2781 |
+
"completion_length": 33.70052194595337,
|
2782 |
+
"epoch": 0.22826666666666667,
|
2783 |
+
"grad_norm": 0.0037686388761955696,
|
2784 |
+
"kl": 0.35205078125,
|
2785 |
+
"learning_rate": 6.269061123724162e-09,
|
2786 |
+
"loss": 0.0004,
|
2787 |
+
"reward": 1.0,
|
2788 |
+
"reward_std": 0.0,
|
2789 |
+
"rewards/equation_reward_func": 0.0,
|
2790 |
+
"rewards/format_reward_func": 1.0,
|
2791 |
+
"step": 428
|
2792 |
+
},
|
2793 |
+
{
|
2794 |
+
"completion_length": 27.914063453674316,
|
2795 |
+
"epoch": 0.22933333333333333,
|
2796 |
+
"grad_norm": 0.003330651432955464,
|
2797 |
+
"kl": 0.354736328125,
|
2798 |
+
"learning_rate": 5.182926277723821e-09,
|
2799 |
+
"loss": 0.0004,
|
2800 |
+
"reward": 1.0,
|
2801 |
+
"reward_std": 0.0,
|
2802 |
+
"rewards/equation_reward_func": 0.0,
|
2803 |
+
"rewards/format_reward_func": 1.0,
|
2804 |
+
"step": 430
|
2805 |
+
},
|
2806 |
+
{
|
2807 |
+
"completion_length": 34.72656321525574,
|
2808 |
+
"epoch": 0.2304,
|
2809 |
+
"grad_norm": 0.004691669166337136,
|
2810 |
+
"kl": 0.3543701171875,
|
2811 |
+
"learning_rate": 4.199551389870659e-09,
|
2812 |
+
"loss": 0.0004,
|
2813 |
+
"reward": 1.0,
|
2814 |
+
"reward_std": 0.0,
|
2815 |
+
"rewards/equation_reward_func": 0.0,
|
2816 |
+
"rewards/format_reward_func": 1.0,
|
2817 |
+
"step": 432
|
2818 |
+
},
|
2819 |
+
{
|
2820 |
+
"completion_length": 21.466146230697632,
|
2821 |
+
"epoch": 0.23146666666666665,
|
2822 |
+
"grad_norm": 0.006847054731283313,
|
2823 |
+
"kl": 0.3829345703125,
|
2824 |
+
"learning_rate": 3.3191406802041688e-09,
|
2825 |
+
"loss": 0.0004,
|
2826 |
+
"reward": 1.0,
|
2827 |
+
"reward_std": 0.0,
|
2828 |
+
"rewards/equation_reward_func": 0.0,
|
2829 |
+
"rewards/format_reward_func": 1.0,
|
2830 |
+
"step": 434
|
2831 |
+
},
|
2832 |
+
{
|
2833 |
+
"completion_length": 24.791667580604553,
|
2834 |
+
"epoch": 0.23253333333333334,
|
2835 |
+
"grad_norm": 0.004002274972123922,
|
2836 |
+
"kl": 0.4224853515625,
|
2837 |
+
"learning_rate": 2.541876985923119e-09,
|
2838 |
+
"loss": 0.0004,
|
2839 |
+
"reward": 1.0,
|
2840 |
+
"reward_std": 0.0,
|
2841 |
+
"rewards/equation_reward_func": 0.0,
|
2842 |
+
"rewards/format_reward_func": 1.0,
|
2843 |
+
"step": 436
|
2844 |
+
},
|
2845 |
+
{
|
2846 |
+
"completion_length": 26.74479252099991,
|
2847 |
+
"epoch": 0.2336,
|
2848 |
+
"grad_norm": 0.004841844168761783,
|
2849 |
+
"kl": 0.3985595703125,
|
2850 |
+
"learning_rate": 1.867921723415433e-09,
|
2851 |
+
"loss": 0.0004,
|
2852 |
+
"reward": 1.0,
|
2853 |
+
"reward_std": 0.0,
|
2854 |
+
"rewards/equation_reward_func": 0.0,
|
2855 |
+
"rewards/format_reward_func": 1.0,
|
2856 |
+
"step": 438
|
2857 |
+
},
|
2858 |
+
{
|
2859 |
+
"completion_length": 30.26562613248825,
|
2860 |
+
"epoch": 0.23466666666666666,
|
2861 |
+
"grad_norm": 0.0037147860959137894,
|
2862 |
+
"kl": 0.3653564453125,
|
2863 |
+
"learning_rate": 1.2974148547362228e-09,
|
2864 |
+
"loss": 0.0004,
|
2865 |
+
"reward": 1.0,
|
2866 |
+
"reward_std": 0.0,
|
2867 |
+
"rewards/equation_reward_func": 0.0,
|
2868 |
+
"rewards/format_reward_func": 1.0,
|
2869 |
+
"step": 440
|
2870 |
+
},
|
2871 |
+
{
|
2872 |
+
"completion_length": 39.00781399011612,
|
2873 |
+
"epoch": 0.23573333333333332,
|
2874 |
+
"grad_norm": 0.0036142159951702123,
|
2875 |
+
"kl": 0.3477783203125,
|
2876 |
+
"learning_rate": 8.304748585417076e-10,
|
2877 |
+
"loss": 0.0003,
|
2878 |
+
"reward": 1.0,
|
2879 |
+
"reward_std": 0.0,
|
2880 |
+
"rewards/equation_reward_func": 0.0,
|
2881 |
+
"rewards/format_reward_func": 1.0,
|
2882 |
+
"step": 442
|
2883 |
+
},
|
2884 |
+
{
|
2885 |
+
"completion_length": 22.03385466337204,
|
2886 |
+
"epoch": 0.2368,
|
2887 |
+
"grad_norm": 0.004359450323671437,
|
2888 |
+
"kl": 0.3602294921875,
|
2889 |
+
"learning_rate": 4.671987054842841e-10,
|
2890 |
+
"loss": 0.0004,
|
2891 |
+
"reward": 1.0,
|
2892 |
+
"reward_std": 0.0,
|
2893 |
+
"rewards/equation_reward_func": 0.0,
|
2894 |
+
"rewards/format_reward_func": 1.0,
|
2895 |
+
"step": 444
|
2896 |
+
},
|
2897 |
+
{
|
2898 |
+
"completion_length": 25.75520932674408,
|
2899 |
+
"epoch": 0.23786666666666667,
|
2900 |
+
"grad_norm": 0.0055438604826414635,
|
2901 |
+
"kl": 0.366455078125,
|
2902 |
+
"learning_rate": 2.076618380744133e-10,
|
2903 |
+
"loss": 0.0004,
|
2904 |
+
"reward": 1.0,
|
2905 |
+
"reward_std": 0.0,
|
2906 |
+
"rewards/equation_reward_func": 0.0,
|
2907 |
+
"rewards/format_reward_func": 1.0,
|
2908 |
+
"step": 446
|
2909 |
+
},
|
2910 |
+
{
|
2911 |
+
"completion_length": 29.468751192092896,
|
2912 |
+
"epoch": 0.23893333333333333,
|
2913 |
+
"grad_norm": 0.004686764994007478,
|
2914 |
+
"kl": 0.3499755859375,
|
2915 |
+
"learning_rate": 5.191815501343066e-11,
|
2916 |
+
"loss": 0.0003,
|
2917 |
+
"reward": 1.0,
|
2918 |
+
"reward_std": 0.0,
|
2919 |
+
"rewards/equation_reward_func": 0.0,
|
2920 |
+
"rewards/format_reward_func": 1.0,
|
2921 |
+
"step": 448
|
2922 |
+
},
|
2923 |
+
{
|
2924 |
+
"completion_length": 23.330729842185974,
|
2925 |
+
"epoch": 0.24,
|
2926 |
+
"grad_norm": 0.002691527304301135,
|
2927 |
+
"kl": 0.359375,
|
2928 |
+
"learning_rate": 0.0,
|
2929 |
+
"loss": 0.0004,
|
2930 |
+
"reward": 1.0,
|
2931 |
+
"reward_std": 0.0,
|
2932 |
+
"rewards/equation_reward_func": 0.0,
|
2933 |
+
"rewards/format_reward_func": 1.0,
|
2934 |
+
"step": 450
|
2935 |
+
},
|
2936 |
+
{
|
2937 |
+
"epoch": 0.24,
|
2938 |
+
"step": 450,
|
2939 |
+
"total_flos": 0.0,
|
2940 |
+
"train_loss": 0.00035568679777363087,
|
2941 |
+
"train_runtime": 8958.7654,
|
2942 |
+
"train_samples_per_second": 1.206,
|
2943 |
+
"train_steps_per_second": 0.05
|
2944 |
+
}
|
2945 |
+
],
|
2946 |
+
"logging_steps": 2,
|
2947 |
+
"max_steps": 450,
|
2948 |
+
"num_input_tokens_seen": 0,
|
2949 |
+
"num_train_epochs": 1,
|
2950 |
+
"save_steps": 25,
|
2951 |
+
"stateful_callbacks": {
|
2952 |
+
"TrainerControl": {
|
2953 |
+
"args": {
|
2954 |
+
"should_epoch_stop": false,
|
2955 |
+
"should_evaluate": false,
|
2956 |
+
"should_log": false,
|
2957 |
+
"should_save": true,
|
2958 |
+
"should_training_stop": true
|
2959 |
+
},
|
2960 |
+
"attributes": {}
|
2961 |
+
}
|
2962 |
+
},
|
2963 |
+
"total_flos": 0.0,
|
2964 |
+
"train_batch_size": 1,
|
2965 |
+
"trial_name": null,
|
2966 |
+
"trial_params": null
|
2967 |
+
}
|