File size: 1,489 Bytes
d05fc01 38b75da d05fc01 4fd808c d05fc01 f89e3ac d05fc01 0f347f7 d05fc01 066964b d05fc01 38b75da |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 |
---
language:
- en
pipeline_tag: image-to-image
tags:
- Diffusion Models
- Stable Diffusion
- Perturbed-Attention Guidance
- PAG
---
# Inpainting with Perturbed-Attention Guidance
[Project](https://ku-cvlab.github.io/Perturbed-Attention-Guidance/) / [arXiv](https://arxiv.org/abs/2403.17377) / [GitHub](https://github.com/KU-CVLAB/Perturbed-Attention-Guidance)
This repository is based on [Diffusers](https://huggingface.co./docs/diffusers/index).
The pipeline is a modification of StableDiffusionPipeline to support inpainting with Perturbed-Attention Guidance (PAG). Please refer to "Inpainting" section of an [official document](https://huggingface.co./docs/diffusers/using-diffusers/inpaint) for details.
## Quickstart
Loading Custom Piepline:
```
from diffusers import StableDiffusionPipeline
pipe = StableDiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-inpainting",
custom_pipeline="hyoungwoncho/sd_perturbed_attention_guidance_inpaint",
torch_dtype=torch.float16,
safety_checker=None
)
device="cuda"
pipe = pipe.to(device)
```
Inpainting with PAG:
```
output = pipe(
prompts,
image=init_image,
mask_image=mask_image,
num_inference_steps=50,
guidance_scale=0.0,
pag_scale=3.0,
pag_applied_layers_index=['u0']
).images[0]
```
## Parameters
guidance_scale : gudiance scale of CFG (ex: 7.5)
pag_scale : gudiance scale of PAG (ex: 3.0)
pag_applied_layers_index : index of the layer to apply perturbation (ex: ['u0']) |