--- language: - ko license: apache-2.0 tags: - hf-asr-leaderboard - generated_from_trainer datasets: - hyojin99/EBRC base_model: openai/whisper-base model-index: - name: ft_model results: [] --- # ft_model This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co./openai/whisper-base) on the EBRC dataset. It achieves the following results on the evaluation set: - Loss: 0.4044 - Cer: 16.1170 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - training_steps: 6250 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Cer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.4709 | 1.0 | 1250 | 0.4644 | 20.4829 | | 0.2318 | 2.0 | 2500 | 0.3985 | 17.9464 | | 0.1339 | 3.0 | 3750 | 0.3915 | 16.9433 | | 0.0539 | 4.0 | 5000 | 0.3962 | 16.2937 | | 0.0206 | 5.0 | 6250 | 0.4044 | 16.1170 | ### Framework versions - Transformers 4.40.0.dev0 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2