File size: 2,025 Bytes
18a941a d4e17a0 18a941a c14c572 d4e17a0 18a941a c14c572 18a941a c14c572 18a941a c14c572 18a941a c14c572 18a941a c14c572 18a941a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
---
base_model: hfl/chinese-roberta-wwm-ext
library_name: transformers
license: apache-2.0
metrics:
- accuracy
tags:
- generated_from_trainer
model-index:
- name: chinese-roberta-climate-related-prediction-V2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# chinese-roberta-climate-related-prediction-V2
This model is a fine-tuned version of [hfl/chinese-roberta-wwm-ext](https://huggingface.co./hfl/chinese-roberta-wwm-ext) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2396
- Accuracy: 0.97
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 175 | 0.2359 | 0.97 |
| No log | 2.0 | 350 | 0.1874 | 0.98 |
| 0.0247 | 3.0 | 525 | 0.1947 | 0.98 |
| 0.0247 | 4.0 | 700 | 0.2070 | 0.98 |
| 0.0247 | 5.0 | 875 | 0.2106 | 0.98 |
| 0.003 | 6.0 | 1050 | 0.2937 | 0.96 |
| 0.003 | 7.0 | 1225 | 0.2567 | 0.97 |
| 0.003 | 8.0 | 1400 | 0.2427 | 0.97 |
| 0.0 | 9.0 | 1575 | 0.2402 | 0.97 |
| 0.0 | 10.0 | 1750 | 0.2396 | 0.97 |
### Framework versions
- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 3.0.0
- Tokenizers 0.19.1
|