Edit model card

BBC_CLS_deberta_v3_large_v2

This model is a fine-tuned version of microsoft/deberta-v3-large on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0857
  • Accuracy: 0.9866
  • Precision: 0.9723
  • Recall: 0.9780
  • F1: 0.9751

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
1.235 1.0 66 0.6331 0.7964 0.4047 0.4873 0.4418
0.4336 2.0 132 0.2201 0.8971 0.6754 0.7091 0.6910
0.2133 3.0 198 0.0990 0.9776 0.9476 0.9786 0.9602
0.1083 4.0 264 0.1038 0.9821 0.9656 0.9651 0.9653
0.0848 5.0 330 0.0907 0.9866 0.9782 0.9714 0.9747
0.1087 6.0 396 0.1270 0.9799 0.9672 0.9689 0.9671
0.1011 7.0 462 0.1289 0.9754 0.9677 0.9660 0.9667
0.0827 8.0 528 0.0990 0.9799 0.9818 0.9479 0.9632
0.0621 9.0 594 0.0857 0.9866 0.9723 0.9780 0.9751
0.0444 10.0 660 0.1071 0.9843 0.9769 0.9663 0.9715

Framework versions

  • Transformers 4.35.0.dev0
  • Pytorch 1.13.1
  • Datasets 2.13.0
  • Tokenizers 0.14.1
Downloads last month
6
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for huyhuyvu01/DeBERTa_large_chartering_email_cls

Finetuned
(88)
this model