File size: 5,847 Bytes
4c59b6b
4f4e049
 
 
 
4c59b6b
 
 
 
 
 
 
 
 
 
 
633d5a9
4c59b6b
 
 
 
 
 
23eaa59
4c59b6b
 
 
d3769bc
 
 
 
 
4c59b6b
 
 
f050265
4c59b6b
 
 
 
 
 
 
 
 
 
 
 
 
ecf01c2
 
 
 
4c59b6b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dda2292
4c59b6b
 
dda2292
4c59b6b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f050265
a3a6ae5
4c59b6b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dda2292
4c59b6b
 
dda2292
4c59b6b
 
 
 
 
 
 
 
 
 
 
 
633d5a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4c59b6b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c7a7918
4c59b6b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
be921c0
 
 
4c59b6b
be921c0
 
 
4c59b6b
be921c0
4c59b6b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
[paths]
parser_model = "models/hu_core_news_lg-parser-3.8.0/model-best"
ner_model = "models/hu_core_news_lg-ner-3.8.0/model-best"
lemmatizer_lookups = "models/hu_core_news_lg-lookup-lemmatizer-3.8.0"
tagger_model = "models/hu_core_news_lg-tagger-3.8.0/model-best"
train = null
dev = null
vectors = null
init_tok2vec = null

[system]
seed = 0
gpu_allocator = null

[nlp]
lang = "hu"
pipeline = ["tok2vec","senter","tagger","morphologizer","lookup_lemmatizer","trainable_lemmatizer","parser","ner"]
tokenizer = {"@tokenizers":"spacy.Tokenizer.v1"}
disabled = []
before_creation = null
after_creation = null
after_pipeline_creation = null
batch_size = 1000
vectors = {"@vectors":"spacy.Vectors.v1"}

[components]

[components.lookup_lemmatizer]
factory = "hu.lookup_lemmatizer"
scorer = {"@scorers":"spacy.lemmatizer_scorer.v1"}
source = ${paths.lemmatizer_lookups}

[components.morphologizer]
factory = "morphologizer"
extend = false
label_smoothing = 0.0
overwrite = true
scorer = {"@scorers":"spacy.morphologizer_scorer.v1"}

[components.morphologizer.model]
@architectures = "spacy.Tagger.v1"
nO = null

[components.morphologizer.model.tok2vec]
@architectures = "spacy.Tok2VecListener.v1"
width = 300
upstream = "*"

[components.ner]
factory = "beam_ner"
beam_density = 0.01
beam_update_prob = 1
beam_width = 32
incorrect_spans_key = null
moves = null
scorer = {"@scorers":"spacy.ner_scorer.v1"}
update_with_oracle_cut_size = 100

[components.ner.model]
@architectures = "spacy.TransitionBasedParser.v2"
state_type = "ner"
extra_state_tokens = false
hidden_width = 64
maxout_pieces = 2
use_upper = true
nO = null

[components.ner.model.tok2vec]
@architectures = "spacy.Tok2Vec.v2"

[components.ner.model.tok2vec.embed]
@architectures = "spacy.MultiHashEmbed.v2"
width = 300
attrs = ["LOWER","PREFIX","SUFFIX","SHAPE"]
rows = [5000,2500,2500,2500]
include_static_vectors = true

[components.ner.model.tok2vec.encode]
@architectures = "spacy.MaxoutWindowEncoder.v2"
width = 300
depth = 4
window_size = 2
maxout_pieces = 5

[components.parser]
factory = "parser"
learn_tokens = false
min_action_freq = 5
moves = null
scorer = {"@scorers":"spacy.parser_scorer.v1"}
update_with_oracle_cut_size = 100

[components.parser.model]
@architectures = "spacy.TransitionBasedParser.v2"
state_type = "parser"
extra_state_tokens = false
hidden_width = 512
maxout_pieces = 3
use_upper = true
nO = null

[components.parser.model.tok2vec]
@architectures = "spacy.Tok2VecListener.v1"
width = 300
upstream = "*"

[components.senter]
factory = "senter"
overwrite = false
scorer = {"@scorers":"spacy.senter_scorer.v1"}

[components.senter.model]
@architectures = "spacy.Tagger.v1"
nO = null

[components.senter.model.tok2vec]
@architectures = "spacy.Tok2VecListener.v1"
width = 300
upstream = "*"

[components.tagger]
factory = "tagger"
label_smoothing = 0.0
neg_prefix = "!"
overwrite = false
scorer = {"@scorers":"spacy.tagger_scorer.v1"}

[components.tagger.model]
@architectures = "spacy.Tagger.v1"
nO = null

[components.tagger.model.tok2vec]
@architectures = "spacy.Tok2VecListener.v1"
width = 300
upstream = "*"

[components.tok2vec]
factory = "tok2vec"

[components.tok2vec.model]
@architectures = "spacy.Tok2Vec.v2"

[components.tok2vec.model.embed]
@architectures = "spacy.MultiHashEmbed.v2"
width = 300
attrs = ["LOWER","PREFIX","SUFFIX","SHAPE"]
rows = [5000,2500,2500,2500]
include_static_vectors = true

[components.tok2vec.model.encode]
@architectures = "spacy.MaxoutWindowEncoder.v2"
width = 300
depth = 4
window_size = 2
maxout_pieces = 5

[components.trainable_lemmatizer]
factory = "trainable_lemmatizer_v2"
backoff = "orth"
min_tree_freq = 1
overwrite = false
overwrite_labels = true
scorer = {"@scorers":"spacy.lemmatizer_scorer.v1"}
top_k = 3

[components.trainable_lemmatizer.model]
@architectures = "spacy.Tagger.v1"
nO = null

[components.trainable_lemmatizer.model.tok2vec]
@architectures = "spacy.Tok2Vec.v2"

[components.trainable_lemmatizer.model.tok2vec.embed]
@architectures = "spacy.MultiHashEmbed.v2"
width = 300
attrs = ["LOWER","PREFIX","SUFFIX","SHAPE"]
rows = [5000,2500,2500,2500]
include_static_vectors = true

[components.trainable_lemmatizer.model.tok2vec.encode]
@architectures = "spacy.MaxoutWindowEncoder.v2"
width = 300
depth = 4
window_size = 2
maxout_pieces = 5

[corpora]

[corpora.dev]
@readers = "spacy.Corpus.v1"
path = ${paths.dev}
gold_preproc = false
max_length = 0
limit = 0
augmenter = null

[corpora.train]
@readers = "spacy.Corpus.v1"
path = ${paths.train}
gold_preproc = false
max_length = 0
limit = 0
augmenter = null

[training]
seed = ${system.seed}
gpu_allocator = ${system.gpu_allocator}
dropout = 0.1
accumulate_gradient = 1
patience = 1600
max_epochs = 0
max_steps = 20000
eval_frequency = 200
frozen_components = []
annotating_components = []
dev_corpus = "corpora.dev"
train_corpus = "corpora.train"
before_to_disk = null
before_update = null

[training.batcher]
@batchers = "spacy.batch_by_words.v1"
discard_oversize = false
tolerance = 0.2
get_length = null

[training.batcher.size]
@schedules = "compounding.v1"
start = 100
stop = 1000
compound = 1.001
t = 0.0

[training.logger]
@loggers = "spacy.ConsoleLogger.v1"
progress_bar = false

[training.optimizer]
@optimizers = "Adam.v1"
beta1 = 0.9
beta2 = 0.999
L2_is_weight_decay = true
L2 = 0.01
grad_clip = 1.0
use_averages = false
eps = 0.00000001
learn_rate = 0.001

[training.score_weights]
sents_f = 0.0
sents_p = null
sents_r = null
tag_acc = 0.2
pos_acc = 0.1
morph_acc = 0.1
morph_per_feat = null
lemma_acc = 0.2
dep_uas = 0.1
dep_las = 0.1
dep_las_per_type = null
ents_f = 0.2
ents_p = 0.0
ents_r = 0.0
ents_per_type = null

[pretraining]

[initialize]
vectors = ${paths.parser_model}
init_tok2vec = ${paths.init_tok2vec}
vocab_data = null
lookups = null
before_init = null
after_init = null

[initialize.components]

[initialize.tokenizer]