--- library_name: transformers license: bsd-3-clause --- Mirror of the base ProGen2-xlarge model (with slightly modified configuration and forward pass) introduced by [Nijkamp, et al.](https://arxiv.org/abs/2206.13517). See also my github [repo](https://github.com/hugohrban/ProGen2-finetuning/tree/main) for an example of finetuning this model. Example usage: ```python from transformers import AutoModelForCausalLM from tokenizers import Tokenizer import torch import torch.nn.functional as F # load model and tokenizer model = AutoModelForCausalLM.from_pretrained("hugohrban/progen2-xlarge", trust_remote_code=True) tokenizer = Tokenizer.from_pretrained("hugohrban/progen2-xlarge") tokenizer.no_padding() # prepare input prompt = "1MEVVIVTGMSGAGK" input_ids = torch.tensor(tokenizer.encode(prompt).ids).to(model.device) # forward pass logits = model(input_ids).logits # print output probabilities next_token_logits = logits[-1, :] next_token_probs = F.softmax(next_token_logits, dim=-1) for i in range(tokenizer.get_vocab_size(with_added_tokens=False)): print(f"{tokenizer.id_to_token(i)}: {100 * next_token_probs[i].item():.2f} %") ```