progen2-small / configuration_progen.py
hugohrban's picture
Upload config
2029a8c verified
raw
history blame
2.79 kB
# coding=utf-8
# Copyright 2021 The EleutherAI and HuggingFace Teams. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Modified configuration implementation based on https://github.com/huggingface/transformers/blob/main/src/transformers/models/gptj/configuration_gptj.py
from transformers.configuration_utils import PretrainedConfig
from transformers.utils import logging
logger = logging.get_logger(__name__)
class ProGenConfig(PretrainedConfig):
model_type = "progen"
def __init__(
self,
vocab_size_emb=32,
vocab_size_lm_head=32,
n_positions=1024,
n_embd=1024,
n_layer=12,
n_head=16,
rotary_dim=32,
n_inner=None,
activation_function="gelu_new",
resid_pdrop=0.0,
embd_pdrop=0.0,
attn_pdrop=0.0,
layer_norm_epsilon=1e-5,
initializer_range=0.02,
scale_attn_weights=True,
gradient_checkpointing=False,
use_cache=True,
bos_token_id=1,
eos_token_id=2,
**kwargs
):
super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
self.vocab_size_emb = vocab_size_emb
self.vocab_size_lm_head = vocab_size_lm_head
self.n_positions = n_positions # context window size
self.n_embd = n_embd
self.n_layer = n_layer
self.n_head = n_head
self.n_inner = n_inner
self.rotary_dim = rotary_dim
self.activation_function = activation_function
self.resid_pdrop = resid_pdrop
self.embd_pdrop = embd_pdrop
self.attn_pdrop = attn_pdrop
self.layer_norm_epsilon = layer_norm_epsilon
self.initializer_range = initializer_range
self.gradient_checkpointing = gradient_checkpointing
self.scale_attn_weights = scale_attn_weights
self.use_cache = use_cache
self.bos_token_id = bos_token_id
self.eos_token_id = eos_token_id
@property
def max_position_embeddings(self):
return self.n_positions
@property
def hidden_size(self):
return self.n_embd
@property
def num_attention_heads(self):
return self.n_head
@property
def num_hidden_layers(self):
return self.n_layer