New model from https://wandb.ai/wandb/huggingtweets/runs/slu2szr7
Browse files- README.md +37 -65
- config.json +5 -0
- merges.txt +1 -1
- pytorch_model.bin +2 -2
- special_tokens_map.json +1 -1
- tokenizer.json +0 -0
- tokenizer_config.json +1 -1
- training_args.bin +3 -0
- vocab.json +0 -0
README.md
CHANGED
@@ -1,28 +1,27 @@
|
|
1 |
---
|
2 |
language: en
|
3 |
-
thumbnail: https://
|
4 |
tags:
|
5 |
- huggingtweets
|
6 |
widget:
|
7 |
- text: "My dream is"
|
8 |
---
|
9 |
|
10 |
-
<
|
11 |
-
|
12 |
-
<
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
</
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
<div style="
|
23 |
-
</div>
|
24 |
-
<div style="
|
25 |
-
<div style="font-size: 15px; color: #657786">@ladygaga bot</div>
|
26 |
</div>
|
27 |
|
28 |
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
|
@@ -35,62 +34,41 @@ The model uses the following pipeline.
|
|
35 |
|
36 |
![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true)
|
37 |
|
38 |
-
To understand how the model was developed, check the [W&B report](https://
|
39 |
|
40 |
## Training data
|
41 |
|
42 |
-
The model was trained on
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
|
53 |
-
<td style='border-width:0'>Tweets downloaded</td>
|
54 |
-
<td style='border-width:0'>3160</td>
|
55 |
-
</tr>
|
56 |
-
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
|
57 |
-
<td style='border-width:0'>Retweets</td>
|
58 |
-
<td style='border-width:0'>656</td>
|
59 |
-
</tr>
|
60 |
-
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
|
61 |
-
<td style='border-width:0'>Short tweets</td>
|
62 |
-
<td style='border-width:0'>309</td>
|
63 |
-
</tr>
|
64 |
-
<tr style='border-width:0'>
|
65 |
-
<td style='border-width:0'>Tweets kept</td>
|
66 |
-
<td style='border-width:0'>2195</td>
|
67 |
-
</tr>
|
68 |
-
</tbody>
|
69 |
-
</table>
|
70 |
-
|
71 |
-
[Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/29cjssij/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
|
72 |
|
73 |
## Training procedure
|
74 |
|
75 |
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @ladygaga's tweets.
|
76 |
|
77 |
-
Hyperparameters and metrics are recorded in the [W&B training run](https://
|
78 |
-
|
79 |
-
At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/1unoc8ut/artifacts) is logged and versioned.
|
80 |
|
81 |
-
|
82 |
|
83 |
-
|
84 |
|
85 |
You can use this model directly with a pipeline for text generation:
|
86 |
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
|
|
92 |
|
93 |
-
|
94 |
|
95 |
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
|
96 |
|
@@ -100,14 +78,8 @@ In addition, the data present in the user's tweets further affects the text gene
|
|
100 |
|
101 |
*Built by Boris Dayma*
|
102 |
|
103 |
-
</section>
|
104 |
-
|
105 |
[![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma)
|
106 |
|
107 |
-
<section class='prose'>
|
108 |
For more details, visit the project repository.
|
109 |
-
</section>
|
110 |
|
111 |
[![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
|
112 |
-
|
113 |
-
<!--- random size file -->
|
|
|
1 |
---
|
2 |
language: en
|
3 |
+
thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true
|
4 |
tags:
|
5 |
- huggingtweets
|
6 |
widget:
|
7 |
- text: "My dream is"
|
8 |
---
|
9 |
|
10 |
+
<div class="inline-flex flex-col" style="line-height: 1.5;">
|
11 |
+
<div class="flex">
|
12 |
+
<div
|
13 |
+
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1369334540339085312/dLY4T49m_400x400.jpg')">
|
14 |
+
</div>
|
15 |
+
<div
|
16 |
+
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
|
17 |
+
</div>
|
18 |
+
<div
|
19 |
+
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
|
20 |
+
</div>
|
21 |
+
</div>
|
22 |
+
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
|
23 |
+
<div style="text-align: center; font-size: 16px; font-weight: 800">Lady Gaga</div>
|
24 |
+
<div style="text-align: center; font-size: 14px;">@ladygaga</div>
|
|
|
25 |
</div>
|
26 |
|
27 |
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
|
|
|
34 |
|
35 |
![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true)
|
36 |
|
37 |
+
To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
|
38 |
|
39 |
## Training data
|
40 |
|
41 |
+
The model was trained on tweets from Lady Gaga.
|
42 |
+
|
43 |
+
| Data | Lady Gaga |
|
44 |
+
| --- | --- |
|
45 |
+
| Tweets downloaded | 3111 |
|
46 |
+
| Retweets | 607 |
|
47 |
+
| Short tweets | 307 |
|
48 |
+
| Tweets kept | 2197 |
|
49 |
+
|
50 |
+
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2y0zrklh/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
## Training procedure
|
53 |
|
54 |
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @ladygaga's tweets.
|
55 |
|
56 |
+
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/slu2szr7) for full transparency and reproducibility.
|
|
|
|
|
57 |
|
58 |
+
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/slu2szr7/artifacts) is logged and versioned.
|
59 |
|
60 |
+
## How to use
|
61 |
|
62 |
You can use this model directly with a pipeline for text generation:
|
63 |
|
64 |
+
```python
|
65 |
+
from transformers import pipeline
|
66 |
+
generator = pipeline('text-generation',
|
67 |
+
model='huggingtweets/ladygaga')
|
68 |
+
generator("My dream is", num_return_sequences=5)
|
69 |
+
```
|
70 |
|
71 |
+
## Limitations and bias
|
72 |
|
73 |
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
|
74 |
|
|
|
78 |
|
79 |
*Built by Boris Dayma*
|
80 |
|
|
|
|
|
81 |
[![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma)
|
82 |
|
|
|
83 |
For more details, visit the project repository.
|
|
|
84 |
|
85 |
[![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
|
|
|
|
config.json
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
{
|
|
|
2 |
"activation_function": "gelu_new",
|
3 |
"architectures": [
|
4 |
"GPT2LMHeadModel"
|
@@ -7,6 +8,7 @@
|
|
7 |
"bos_token_id": 50256,
|
8 |
"embd_pdrop": 0.1,
|
9 |
"eos_token_id": 50256,
|
|
|
10 |
"initializer_range": 0.02,
|
11 |
"layer_norm_epsilon": 1e-05,
|
12 |
"model_type": "gpt2",
|
@@ -17,6 +19,7 @@
|
|
17 |
"n_layer": 12,
|
18 |
"n_positions": 1024,
|
19 |
"resid_pdrop": 0.1,
|
|
|
20 |
"summary_activation": null,
|
21 |
"summary_first_dropout": 0.1,
|
22 |
"summary_proj_to_labels": true,
|
@@ -32,5 +35,7 @@
|
|
32 |
"top_p": 0.95
|
33 |
}
|
34 |
},
|
|
|
|
|
35 |
"vocab_size": 50257
|
36 |
}
|
|
|
1 |
{
|
2 |
+
"_name_or_path": "gpt2",
|
3 |
"activation_function": "gelu_new",
|
4 |
"architectures": [
|
5 |
"GPT2LMHeadModel"
|
|
|
8 |
"bos_token_id": 50256,
|
9 |
"embd_pdrop": 0.1,
|
10 |
"eos_token_id": 50256,
|
11 |
+
"gradient_checkpointing": false,
|
12 |
"initializer_range": 0.02,
|
13 |
"layer_norm_epsilon": 1e-05,
|
14 |
"model_type": "gpt2",
|
|
|
19 |
"n_layer": 12,
|
20 |
"n_positions": 1024,
|
21 |
"resid_pdrop": 0.1,
|
22 |
+
"scale_attn_weights": true,
|
23 |
"summary_activation": null,
|
24 |
"summary_first_dropout": 0.1,
|
25 |
"summary_proj_to_labels": true,
|
|
|
35 |
"top_p": 0.95
|
36 |
}
|
37 |
},
|
38 |
+
"transformers_version": "4.6.1",
|
39 |
+
"use_cache": true,
|
40 |
"vocab_size": 50257
|
41 |
}
|
merges.txt
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
#version: 0.2
|
2 |
Ġ t
|
3 |
Ġ a
|
4 |
h e
|
|
|
1 |
+
#version: 0.2 - Trained by `huggingface/tokenizers`
|
2 |
Ġ t
|
3 |
Ġ a
|
4 |
h e
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a5a9d06ad05b255301de563eca1c353d1a63caa2bffe6a3f6063ead1289d7330
|
3 |
+
size 510408315
|
special_tokens_map.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"bos_token":
|
|
|
1 |
+
{"bos_token": "<|endoftext|>", "eos_token": "<|endoftext|>", "unk_token": "<|endoftext|>"}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"model_max_length": 1024}
|
|
|
1 |
+
{"unk_token": "<|endoftext|>", "bos_token": "<|endoftext|>", "eos_token": "<|endoftext|>", "add_prefix_space": false, "model_max_length": 1024, "special_tokens_map_file": null, "name_or_path": "gpt2"}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e40566a0d98dc96346c58b49d094bc9d5380311cd4eb2f7265de501c04cee9d3
|
3 |
+
size 2415
|
vocab.json
CHANGED
The diff for this file is too large to render.
See raw diff
|
|