Migrate model card from transformers-repo
Browse filesRead announcement at https://discuss.huggingface.co/t/announcement-all-model-cards-will-be-migrated-to-hf-co-model-repos/2755
Original file history: https://github.com/huggingface/transformers/commits/master/model_cards/huggingface/CodeBERTa-language-id/README.md
README.md
ADDED
@@ -0,0 +1,300 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: code
|
3 |
+
thumbnail: https://cdn-media.huggingface.co/CodeBERTa/CodeBERTa.png
|
4 |
+
datasets:
|
5 |
+
- code_search_net
|
6 |
+
---
|
7 |
+
|
8 |
+
# CodeBERTa-language-id: The World’s fanciest programming language identification algo 🤯
|
9 |
+
|
10 |
+
|
11 |
+
To demonstrate the usefulness of our CodeBERTa pretrained model on downstream tasks beyond language modeling, we fine-tune the [`CodeBERTa-small-v1`](https://huggingface.co/huggingface/CodeBERTa-small-v1) checkpoint on the task of classifying a sample of code into the programming language it's written in (*programming language identification*).
|
12 |
+
|
13 |
+
We add a sequence classification head on top of the model.
|
14 |
+
|
15 |
+
On the evaluation dataset, we attain an eval accuracy and F1 > 0.999 which is not surprising given that the task of language identification is relatively easy (see an intuition why, below).
|
16 |
+
|
17 |
+
## Quick start: using the raw model
|
18 |
+
|
19 |
+
```python
|
20 |
+
CODEBERTA_LANGUAGE_ID = "huggingface/CodeBERTa-language-id"
|
21 |
+
|
22 |
+
tokenizer = RobertaTokenizer.from_pretrained(CODEBERTA_LANGUAGE_ID)
|
23 |
+
model = RobertaForSequenceClassification.from_pretrained(CODEBERTA_LANGUAGE_ID)
|
24 |
+
|
25 |
+
input_ids = tokenizer.encode(CODE_TO_IDENTIFY)
|
26 |
+
logits = model(input_ids)[0]
|
27 |
+
|
28 |
+
language_idx = logits.argmax() # index for the resulting label
|
29 |
+
```
|
30 |
+
|
31 |
+
|
32 |
+
## Quick start: using Pipelines 💪
|
33 |
+
|
34 |
+
```python
|
35 |
+
from transformers import TextClassificationPipeline
|
36 |
+
|
37 |
+
pipeline = TextClassificationPipeline(
|
38 |
+
model=RobertaForSequenceClassification.from_pretrained(CODEBERTA_LANGUAGE_ID),
|
39 |
+
tokenizer=RobertaTokenizer.from_pretrained(CODEBERTA_LANGUAGE_ID)
|
40 |
+
)
|
41 |
+
|
42 |
+
pipeline(CODE_TO_IDENTIFY)
|
43 |
+
```
|
44 |
+
|
45 |
+
Let's start with something very easy:
|
46 |
+
|
47 |
+
```python
|
48 |
+
pipeline("""
|
49 |
+
def f(x):
|
50 |
+
return x**2
|
51 |
+
""")
|
52 |
+
# [{'label': 'python', 'score': 0.9999965}]
|
53 |
+
```
|
54 |
+
|
55 |
+
Now let's probe shorter code samples:
|
56 |
+
|
57 |
+
```python
|
58 |
+
pipeline("const foo = 'bar'")
|
59 |
+
# [{'label': 'javascript', 'score': 0.9977546}]
|
60 |
+
```
|
61 |
+
|
62 |
+
What if I remove the `const` token from the assignment?
|
63 |
+
```python
|
64 |
+
pipeline("foo = 'bar'")
|
65 |
+
# [{'label': 'javascript', 'score': 0.7176245}]
|
66 |
+
```
|
67 |
+
|
68 |
+
For some reason, this is still statistically detected as JS code, even though it's also valid Python code. However, if we slightly tweak it:
|
69 |
+
|
70 |
+
```python
|
71 |
+
pipeline("foo = u'bar'")
|
72 |
+
# [{'label': 'python', 'score': 0.7638422}]
|
73 |
+
```
|
74 |
+
This is now detected as Python (Notice the `u` string modifier).
|
75 |
+
|
76 |
+
Okay, enough with the JS and Python domination already! Let's try fancier languages:
|
77 |
+
|
78 |
+
```python
|
79 |
+
pipeline("echo $FOO")
|
80 |
+
# [{'label': 'php', 'score': 0.9995257}]
|
81 |
+
```
|
82 |
+
|
83 |
+
(Yes, I used the word "fancy" to describe PHP 😅)
|
84 |
+
|
85 |
+
```python
|
86 |
+
pipeline("outcome := rand.Intn(6) + 1")
|
87 |
+
# [{'label': 'go', 'score': 0.9936151}]
|
88 |
+
```
|
89 |
+
|
90 |
+
Why is the problem of language identification so easy (with the correct toolkit)? Because code's syntax is rigid, and simple tokens such as `:=` (the assignment operator in Go) are perfect predictors of the underlying language:
|
91 |
+
|
92 |
+
```python
|
93 |
+
pipeline(":=")
|
94 |
+
# [{'label': 'go', 'score': 0.9998052}]
|
95 |
+
```
|
96 |
+
|
97 |
+
By the way, because we trained our own custom tokenizer on the [CodeSearchNet](https://github.blog/2019-09-26-introducing-the-codesearchnet-challenge/) dataset, and it handles streams of bytes in a very generic way, syntactic constructs such `:=` are represented by a single token:
|
98 |
+
|
99 |
+
```python
|
100 |
+
self.tokenizer.encode(" :=", add_special_tokens=False)
|
101 |
+
# [521]
|
102 |
+
```
|
103 |
+
|
104 |
+
<br>
|
105 |
+
|
106 |
+
## Fine-tuning code
|
107 |
+
|
108 |
+
<details>
|
109 |
+
|
110 |
+
```python
|
111 |
+
import gzip
|
112 |
+
import json
|
113 |
+
import logging
|
114 |
+
import os
|
115 |
+
from pathlib import Path
|
116 |
+
from typing import Dict, List, Tuple
|
117 |
+
|
118 |
+
import numpy as np
|
119 |
+
import torch
|
120 |
+
from sklearn.metrics import f1_score
|
121 |
+
from tokenizers.implementations.byte_level_bpe import ByteLevelBPETokenizer
|
122 |
+
from tokenizers.processors import BertProcessing
|
123 |
+
from torch.nn.utils.rnn import pad_sequence
|
124 |
+
from torch.utils.data import DataLoader, Dataset
|
125 |
+
from torch.utils.data.dataset import Dataset
|
126 |
+
from torch.utils.tensorboard.writer import SummaryWriter
|
127 |
+
from tqdm import tqdm, trange
|
128 |
+
|
129 |
+
from transformers import RobertaForSequenceClassification
|
130 |
+
from transformers.data.metrics import acc_and_f1, simple_accuracy
|
131 |
+
|
132 |
+
|
133 |
+
logging.basicConfig(level=logging.INFO)
|
134 |
+
|
135 |
+
|
136 |
+
CODEBERTA_PRETRAINED = "huggingface/CodeBERTa-small-v1"
|
137 |
+
|
138 |
+
LANGUAGES = [
|
139 |
+
"go",
|
140 |
+
"java",
|
141 |
+
"javascript",
|
142 |
+
"php",
|
143 |
+
"python",
|
144 |
+
"ruby",
|
145 |
+
]
|
146 |
+
FILES_PER_LANGUAGE = 1
|
147 |
+
EVALUATE = True
|
148 |
+
|
149 |
+
# Set up tokenizer
|
150 |
+
tokenizer = ByteLevelBPETokenizer("./pretrained/vocab.json", "./pretrained/merges.txt",)
|
151 |
+
tokenizer._tokenizer.post_processor = BertProcessing(
|
152 |
+
("</s>", tokenizer.token_to_id("</s>")), ("<s>", tokenizer.token_to_id("<s>")),
|
153 |
+
)
|
154 |
+
tokenizer.enable_truncation(max_length=512)
|
155 |
+
|
156 |
+
# Set up Tensorboard
|
157 |
+
tb_writer = SummaryWriter()
|
158 |
+
|
159 |
+
|
160 |
+
class CodeSearchNetDataset(Dataset):
|
161 |
+
examples: List[Tuple[List[int], int]]
|
162 |
+
|
163 |
+
def __init__(self, split: str = "train"):
|
164 |
+
"""
|
165 |
+
train | valid | test
|
166 |
+
"""
|
167 |
+
|
168 |
+
self.examples = []
|
169 |
+
|
170 |
+
src_files = []
|
171 |
+
for language in LANGUAGES:
|
172 |
+
src_files += list(
|
173 |
+
Path("../CodeSearchNet/resources/data/").glob(f"{language}/final/jsonl/{split}/*.jsonl.gz")
|
174 |
+
)[:FILES_PER_LANGUAGE]
|
175 |
+
for src_file in src_files:
|
176 |
+
label = src_file.parents[3].name
|
177 |
+
label_idx = LANGUAGES.index(label)
|
178 |
+
print("🔥", src_file, label)
|
179 |
+
lines = []
|
180 |
+
fh = gzip.open(src_file, mode="rt", encoding="utf-8")
|
181 |
+
for line in fh:
|
182 |
+
o = json.loads(line)
|
183 |
+
lines.append(o["code"])
|
184 |
+
examples = [(x.ids, label_idx) for x in tokenizer.encode_batch(lines)]
|
185 |
+
self.examples += examples
|
186 |
+
print("🔥🔥")
|
187 |
+
|
188 |
+
def __len__(self):
|
189 |
+
return len(self.examples)
|
190 |
+
|
191 |
+
def __getitem__(self, i):
|
192 |
+
# We’ll pad at the batch level.
|
193 |
+
return self.examples[i]
|
194 |
+
|
195 |
+
|
196 |
+
model = RobertaForSequenceClassification.from_pretrained(CODEBERTA_PRETRAINED, num_labels=len(LANGUAGES))
|
197 |
+
|
198 |
+
train_dataset = CodeSearchNetDataset(split="train")
|
199 |
+
eval_dataset = CodeSearchNetDataset(split="test")
|
200 |
+
|
201 |
+
|
202 |
+
def collate(examples):
|
203 |
+
input_ids = pad_sequence([torch.tensor(x[0]) for x in examples], batch_first=True, padding_value=1)
|
204 |
+
labels = torch.tensor([x[1] for x in examples])
|
205 |
+
# ^^ uncessary .unsqueeze(-1)
|
206 |
+
return input_ids, labels
|
207 |
+
|
208 |
+
|
209 |
+
train_dataloader = DataLoader(train_dataset, batch_size=256, shuffle=True, collate_fn=collate)
|
210 |
+
|
211 |
+
batch = next(iter(train_dataloader))
|
212 |
+
|
213 |
+
|
214 |
+
model.to("cuda")
|
215 |
+
model.train()
|
216 |
+
for param in model.roberta.parameters():
|
217 |
+
param.requires_grad = False
|
218 |
+
## ^^ Only train final layer.
|
219 |
+
|
220 |
+
print(f"num params:", model.num_parameters())
|
221 |
+
print(f"num trainable params:", model.num_parameters(only_trainable=True))
|
222 |
+
|
223 |
+
|
224 |
+
def evaluate():
|
225 |
+
eval_loss = 0.0
|
226 |
+
nb_eval_steps = 0
|
227 |
+
preds = np.empty((0), dtype=np.int64)
|
228 |
+
out_label_ids = np.empty((0), dtype=np.int64)
|
229 |
+
|
230 |
+
model.eval()
|
231 |
+
|
232 |
+
eval_dataloader = DataLoader(eval_dataset, batch_size=512, collate_fn=collate)
|
233 |
+
for step, (input_ids, labels) in enumerate(tqdm(eval_dataloader, desc="Eval")):
|
234 |
+
with torch.no_grad():
|
235 |
+
outputs = model(input_ids=input_ids.to("cuda"), labels=labels.to("cuda"))
|
236 |
+
loss = outputs[0]
|
237 |
+
logits = outputs[1]
|
238 |
+
eval_loss += loss.mean().item()
|
239 |
+
nb_eval_steps += 1
|
240 |
+
preds = np.append(preds, logits.argmax(dim=1).detach().cpu().numpy(), axis=0)
|
241 |
+
out_label_ids = np.append(out_label_ids, labels.detach().cpu().numpy(), axis=0)
|
242 |
+
eval_loss = eval_loss / nb_eval_steps
|
243 |
+
acc = simple_accuracy(preds, out_label_ids)
|
244 |
+
f1 = f1_score(y_true=out_label_ids, y_pred=preds, average="macro")
|
245 |
+
print("=== Eval: loss ===", eval_loss)
|
246 |
+
print("=== Eval: acc. ===", acc)
|
247 |
+
print("=== Eval: f1 ===", f1)
|
248 |
+
# print(acc_and_f1(preds, out_label_ids))
|
249 |
+
tb_writer.add_scalars("eval", {"loss": eval_loss, "acc": acc, "f1": f1}, global_step)
|
250 |
+
|
251 |
+
|
252 |
+
### Training loop
|
253 |
+
|
254 |
+
global_step = 0
|
255 |
+
train_iterator = trange(0, 4, desc="Epoch")
|
256 |
+
optimizer = torch.optim.AdamW(model.parameters())
|
257 |
+
for _ in train_iterator:
|
258 |
+
epoch_iterator = tqdm(train_dataloader, desc="Iteration")
|
259 |
+
for step, (input_ids, labels) in enumerate(epoch_iterator):
|
260 |
+
optimizer.zero_grad()
|
261 |
+
outputs = model(input_ids=input_ids.to("cuda"), labels=labels.to("cuda"))
|
262 |
+
loss = outputs[0]
|
263 |
+
loss.backward()
|
264 |
+
tb_writer.add_scalar("training_loss", loss.item(), global_step)
|
265 |
+
optimizer.step()
|
266 |
+
global_step += 1
|
267 |
+
if EVALUATE and global_step % 50 == 0:
|
268 |
+
evaluate()
|
269 |
+
model.train()
|
270 |
+
|
271 |
+
|
272 |
+
evaluate()
|
273 |
+
|
274 |
+
os.makedirs("./models/CodeBERT-language-id", exist_ok=True)
|
275 |
+
model.save_pretrained("./models/CodeBERT-language-id")
|
276 |
+
```
|
277 |
+
|
278 |
+
</details>
|
279 |
+
|
280 |
+
<br>
|
281 |
+
|
282 |
+
## CodeSearchNet citation
|
283 |
+
|
284 |
+
<details>
|
285 |
+
|
286 |
+
```bibtex
|
287 |
+
@article{husain_codesearchnet_2019,
|
288 |
+
title = {{CodeSearchNet} {Challenge}: {Evaluating} the {State} of {Semantic} {Code} {Search}},
|
289 |
+
shorttitle = {{CodeSearchNet} {Challenge}},
|
290 |
+
url = {http://arxiv.org/abs/1909.09436},
|
291 |
+
urldate = {2020-03-12},
|
292 |
+
journal = {arXiv:1909.09436 [cs, stat]},
|
293 |
+
author = {Husain, Hamel and Wu, Ho-Hsiang and Gazit, Tiferet and Allamanis, Miltiadis and Brockschmidt, Marc},
|
294 |
+
month = sep,
|
295 |
+
year = {2019},
|
296 |
+
note = {arXiv: 1909.09436},
|
297 |
+
}
|
298 |
+
```
|
299 |
+
|
300 |
+
</details>
|