File size: 4,106 Bytes
c6154a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eeb2784
c6154a9
 
 
 
 
eeb2784
c6154a9
eeb2784
 
c6154a9
eeb2784
 
c6154a9
eeb2784
 
c6154a9
eeb2784
47f4625
 
 
 
 
 
 
 
 
eeb2784
47f4625
eeb2784
47f4625
eeb2784
 
47f4625
eeb2784
47f4625
eeb2784
 
47f4625
eeb2784
47f4625
eeb2784
 
47f4625
eeb2784
47f4625
eeb2784
 
47f4625
eeb2784
47f4625
eeb2784
c6154a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- conll2003
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: test-bert-finetuned-ner
  results:
  - task:
      type: token-classification
      name: Token Classification
    dataset:
      name: conll2003
      type: conll2003
      args: conll2003
    metrics:
    - type: precision
      value: 0.9354625186165811
      name: Precision
    - type: recall
      value: 0.9513631773813531
      name: Recall
    - type: f1
      value: 0.943345848977889
      name: F1
    - type: accuracy
      value: 0.9867545770294931
      name: Accuracy
  - task:
      type: token-classification
      name: Token Classification
    dataset:
      name: conll2003
      type: conll2003
      config: conll2003
      split: test
    metrics:
    - type: accuracy
      value: 0.9003797607979704
      name: Accuracy
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiOGVlNjEyMTJmOTBhMmE1NjY1ODA3MTE0ZjM1YjU5Mzk2ZTY1NWE2MTZiMGMxZTRiNDNjNzNiYzI2NzZiMzAxMiIsInZlcnNpb24iOjF9.ScTPJWA72u8-LTp78w7U8teH-TXdyWnoz4vnK-1TefERahcKQ51eekHI_2xjOPe-1uQmw5z8rKTZfh3MOv-HCw
    - type: precision
      value: 0.9286807108391197
      name: Precision
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYjc0OGM4MTQ0OGM3NzA1ZTJmODg4YmJiZTZjOTVkZWYzZGYxZGYzZThhYzRkMzAxOWNhZmQ0NmJhNTMxZGI4MCIsInZlcnNpb24iOjF9.vloc_Hl4_UmVHUMTN2utIKJ2gYntSlZVuVJNkeGn-fR9SeRbKzmkBds4GQNjsV0JiVmnX0POB1hUqRGP4UjdAg
    - type: recall
      value: 0.9158238551580065
      name: Recall
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYzE2ZGIwNTAzNDhkMDc0MmU2NTQ2MjIyNjA0NzI0N2JiNDM3NjgxNTU3YmNiNWIwOTRmYzNkMTE0MmUyOTNhNiIsInZlcnNpb24iOjF9.-mi3lImJs1-993tdLiTL7KGFEb-jZJVrviqUlFaVY0rgkojDvRyhbUBnJoD4dadh728kRDTH5NW-ZKb9B9FTDg
    - type: f1
      value: 0.9222074745602832
      name: F1
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiOGE1ODE0MGUzZmFhZTNhOWMwMzk3NzQ5MTQwOWIyNjAxZWUwMDgzNDBlNGIyNmY4YmQ4ZDRmOTljZmYyNGYzOCIsInZlcnNpb24iOjF9.PjQJinFobofJhCpsTLEuMSjsskLfbOmAPPQVGWBGk7jYOi3lvd9CUn9i_g1GlbbxuxmO1L9sMAj-pANn-aQiAA
    - type: loss
      value: 0.8705922365188599
      name: loss
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiOGI2YTU4ZmExYmZmMjBmMjM3ZWJhNDA0OGMwZjM4YWE4MjU1YmFjMTQxMjQ5MDlhNzYzYTBmYTc3YzRkN2UwOCIsInZlcnNpb24iOjF9.iyuIRW9M-yknXWi2Whboo-rjzicgxSGaeCpypgiQVYexjenzA5itKt_CDx52t7508zYshp-1ERnEHuEwBic9Aw
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# test-bert-finetuned-ner

This model is a fine-tuned version of [bert-base-cased](https://huggingface.co./bert-base-cased) on the conll2003 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0600
- Precision: 0.9355
- Recall: 0.9514
- F1: 0.9433
- Accuracy: 0.9868

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3

### Training results

| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.0849        | 1.0   | 1756 | 0.0713          | 0.9144    | 0.9366 | 0.9253 | 0.9817   |
| 0.0359        | 2.0   | 3512 | 0.0658          | 0.9346    | 0.9500 | 0.9422 | 0.9860   |
| 0.0206        | 3.0   | 5268 | 0.0600          | 0.9355    | 0.9514 | 0.9433 | 0.9868   |


### Framework versions

- Transformers 4.11.0.dev0
- Pytorch 1.8.1+cu111
- Datasets 1.12.1.dev0
- Tokenizers 0.10.3