|
{"current_steps": 5, "total_steps": 78, "loss": 0.6897, "accuracy": 0.33125001192092896, "learning_rate": 5e-07, "epoch": 0.18691588785046728, "percentage": 6.41, "elapsed_time": "0:02:51", "remaining_time": "0:41:49"} |
|
{"current_steps": 10, "total_steps": 78, "loss": 0.6171, "accuracy": 0.574999988079071, "learning_rate": 1e-06, "epoch": 0.37383177570093457, "percentage": 12.82, "elapsed_time": "0:05:38", "remaining_time": "0:38:20"} |
|
{"current_steps": 15, "total_steps": 78, "loss": 0.5754, "accuracy": 0.7250000238418579, "learning_rate": 9.867190271803463e-07, "epoch": 0.5607476635514018, "percentage": 19.23, "elapsed_time": "0:08:25", "remaining_time": "0:35:21"} |
|
{"current_steps": 20, "total_steps": 78, "loss": 0.5524, "accuracy": 0.768750011920929, "learning_rate": 9.475816456775312e-07, "epoch": 0.7476635514018691, "percentage": 25.64, "elapsed_time": "0:11:11", "remaining_time": "0:32:27"} |
|
{"current_steps": 25, "total_steps": 78, "loss": 0.6395, "accuracy": 0.7562500238418579, "learning_rate": 8.846669854914395e-07, "epoch": 0.9345794392523364, "percentage": 32.05, "elapsed_time": "0:13:58", "remaining_time": "0:29:38"} |
|
{"current_steps": 30, "total_steps": 78, "loss": 0.362, "accuracy": 0.84375, "learning_rate": 8.013173181896282e-07, "epoch": 1.1214953271028036, "percentage": 38.46, "elapsed_time": "0:16:45", "remaining_time": "0:26:49"} |
|
{"current_steps": 35, "total_steps": 78, "loss": 0.2162, "accuracy": 0.8999999761581421, "learning_rate": 7.019605024359474e-07, "epoch": 1.308411214953271, "percentage": 44.87, "elapsed_time": "0:19:32", "remaining_time": "0:23:59"} |
|
{"current_steps": 40, "total_steps": 78, "loss": 0.2639, "accuracy": 0.8999999761581421, "learning_rate": 5.918747589082852e-07, "epoch": 1.4953271028037383, "percentage": 51.28, "elapsed_time": "0:22:19", "remaining_time": "0:21:12"} |
|
{"current_steps": 45, "total_steps": 78, "loss": 0.2784, "accuracy": 0.8812500238418579, "learning_rate": 4.769082706771303e-07, "epoch": 1.6822429906542056, "percentage": 57.69, "elapsed_time": "0:25:06", "remaining_time": "0:18:24"} |
|
{"current_steps": 50, "total_steps": 78, "loss": 0.2858, "accuracy": 0.8812500238418579, "learning_rate": 3.6316850496395855e-07, "epoch": 1.8691588785046729, "percentage": 64.1, "elapsed_time": "0:27:52", "remaining_time": "0:15:36"} |
|
{"current_steps": 50, "total_steps": 78, "eval_loss": 0.5790095925331116, "epoch": 1.8691588785046729, "percentage": 64.1, "elapsed_time": "0:28:43", "remaining_time": "0:16:05"} |
|
{"current_steps": 55, "total_steps": 78, "loss": 0.31, "accuracy": 0.893750011920929, "learning_rate": 2.566977607165719e-07, "epoch": 2.05607476635514, "percentage": 70.51, "elapsed_time": "0:31:30", "remaining_time": "0:13:10"} |
|
{"current_steps": 60, "total_steps": 78, "loss": 0.1789, "accuracy": 0.9125000238418579, "learning_rate": 1.631521781767214e-07, "epoch": 2.2429906542056073, "percentage": 76.92, "elapsed_time": "0:34:16", "remaining_time": "0:10:16"} |
|
{"current_steps": 65, "total_steps": 78, "loss": 0.1692, "accuracy": 0.9750000238418579, "learning_rate": 8.75012627008489e-08, "epoch": 2.4299065420560746, "percentage": 83.33, "elapsed_time": "0:37:04", "remaining_time": "0:07:24"} |
|
{"current_steps": 70, "total_steps": 78, "loss": 0.1563, "accuracy": 0.925000011920929, "learning_rate": 3.376388529782215e-08, "epoch": 2.616822429906542, "percentage": 89.74, "elapsed_time": "0:39:51", "remaining_time": "0:04:33"} |
|
{"current_steps": 75, "total_steps": 78, "loss": 0.1681, "accuracy": 0.918749988079071, "learning_rate": 4.794784562397458e-09, "epoch": 2.803738317757009, "percentage": 96.15, "elapsed_time": "0:42:37", "remaining_time": "0:01:42"} |
|
{"current_steps": 78, "total_steps": 78, "epoch": 2.9158878504672896, "percentage": 100.0, "elapsed_time": "0:44:49", "remaining_time": "0:00:00"} |
|
|