--- license: apache-2.0 base_model: distilbert-base-uncased-finetuned-sst-2-english tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-5000-samples results: [] --- # finetuning-sentiment-model-5000-samples This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co./distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3309 - Accuracy: 0.9156 - F1: 0.9436 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 254 | 0.2906 | 0.8844 | 0.9263 | | 0.2482 | 2.0 | 508 | 0.2648 | 0.9067 | 0.9371 | | 0.2482 | 3.0 | 762 | 0.3114 | 0.92 | 0.9472 | | 0.1236 | 4.0 | 1016 | 0.3309 | 0.9156 | 0.9436 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1