{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f3b6bfff940>"}, "verbose": 1, "policy_kwargs": {":type:": "", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1682848860154795039, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAOrUlL+dIBdA8lo4wOZLPb8U3US+hgQ4P6nkzT5j0fo+YKaJv8THVT+1uQy/wXWfPtPOh76Ys0s/Cd2CPsGCnj+MkhM+h3fdPhQlAj/Fhwy+psovPmtC6j+dhz+/ZNUnvloLEj/V7ZI+GQ0FP3tSgD+GiXy/YY4jQAWACMBwQDC/RuLmOvbE0D3+8+U+YQb0Pix5Uz4Zn4y/GljVvnhAB790qS6/rXvSv+Dyjjxr8zE/ovyHPqvgqL/B7us+a8gpv8uIsj7NQqm/+EUJv4eArz5aCxI/1e2SPhkNBT97UoA/092Bv3frJECo0PO/KdOCv5Kl3T6acoy80cFBPrwPgz/P6la/5PPGv+FHYr/lDDo8xDOwv/lS8L836288ioiCP0s4rr7Tpdi/dMlMvX51i71PRZG+APTbv0xSI79NIeE+WgsSP9Xtkj4ZDQU/e1KAP3SHp78oIiVAHEbNvyOgj7/5UKM/gURCvozecT6fgC8/Uy+9v3AS3L9NqWG/xeUovL9mwb8EjPM9SQOVPiHHyr64RpW+ZiBnP7c2CT/g6CBAD6CdvgmFsr6wjii/hoCVvloLEj/V7ZI+GQ0FP3tSgD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACAtAK2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAhIkiPQAAAAAlPu2/AAAAAK3P0z0AAAAAQ3DsPwAAAABVBBu9AAAAAEua+j8AAAAAWdXdPQAAAAD0LPW/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAVmjKNQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgG1xBr4AAAAAkOzhvwAAAADjT8s9AAAAAH6h6D8AAAAA8P9tvQAAAADgDNw/AAAAAF/g4j0AAAAAw5vwvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABJFMLYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDtK/w9AAAAAJzo3L8AAAAA0ARAPQAAAAAIfO0/AAAAANWTAr0AAAAAkar6PwAAAABTiSU8AAAAAM063r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACQBla2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAaefAPQAAAABhefe/AAAAAEPmZ70AAAAAfkTiPwAAAABmnMw9AAAAALeg9z8AAAAA1RCsPQAAAACwG96/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQINBWkep4r2MAWyUTegDjAF0lEdAqbeyGvfTC3V9lChoBkdAkD62LUCq62gHTegDaAhHQKm4ElnAZbZ1fZQoaAZHQI7XIO2AoXtoB03oA2gIR0CpvAwxnFo+dX2UKGgGR0COGa1gpjMFaAdN6ANoCEdAqb2KkbgjyHV9lChoBkdAiX7iTt9hJGgHTegDaAhHQKnF+/47A+J1fZQoaAZHQI451hCtzS1oB03oA2gIR0Cpxj5W7voedX2UKGgGR0CQJXPwd8zAaAdN6ANoCEdAqci5LuhK2HV9lChoBkdAjITDMeOn22gHTegDaAhHQKnJq6o2n891fZQoaAZHQIiaiSaEzwdoB03oA2gIR0Cp0guAI6bOdX2UKGgGR0CSHiDhLoOhaAdN6ANoCEdAqdJmN3np0XV9lChoBkdAi0agvtdAxGgHTegDaAhHQKnWH+m3vx91fZQoaAZHQJKhhIGyHEdoB03oA2gIR0Cp16dKVY6odX2UKGgGR0CL1sTh5xBFaAdN6ANoCEdAqeEVG/etS3V9lChoBkdAj54Oy3Td+GgHTegDaAhHQKnhYFUyYXx1fZQoaAZHQI2ZZ+c6Nl1oB03oA2gIR0Cp4+/dAPd3dX2UKGgGR0CQaHHd43WGaAdN6ANoCEdAqeTmuq3mWHV9lChoBkdAjfd8SwnpjmgHTegDaAhHQKntKwXZXdV1fZQoaAZHQJBmWMzdk8RoB03oA2gIR0Cp7WqNp/PPdX2UKGgGR0COQAPjn3cpaAdN6ANoCEdAqfCLZlFtsXV9lChoBkdAiUr8bBGhEmgHTegDaAhHQKnx/iONo8J1fZQoaAZHQI81R3u/k/9oB03oA2gIR0Cp/DvQ4S6EdX2UKGgGR0CN1W9aEBbOaAdN6ANoCEdAqfx8yeqaPXV9lChoBkdAiNayNGViWmgHTegDaAhHQKn/BgccU/R1fZQoaAZHQJDxKEDhcZ9oB03oA2gIR0CqAAF+mWMTdX2UKGgGR0CBLu+K0lZ6aAdN6ANoCEdAqghaB/Zuh3V9lChoBkdAiBW8YqG1yGgHTegDaAhHQKoImdeY2Kl1fZQoaAZHQI9cka/ATIxoB03oA2gIR0CqCyG1x82KdX2UKGgGR0CONyY3vQWvaAdN6ANoCEdAqgxwrWiDd3V9lChoBkdAi+odPk7wKGgHTegDaAhHQKoXYKGcnVp1fZQoaAZHQIy1z9VFQVNoB03oA2gIR0CqF6BcJMQFdX2UKGgGR0CID9Ig/1QJaAdN6ANoCEdAqhowYFaB7XV9lChoBkdAinEfLDAJs2gHTegDaAhHQKobLkq+ajN1fZQoaAZHQIsaLhxYJVtoB03oA2gIR0CqI5mgi/widX2UKGgGR0CMNCbQTmGNaAdN6ANoCEdAqiPa6DoQnXV9lChoBkdAiLmNOuaF22gHTegDaAhHQKomaKF7D2t1fZQoaAZHQIrexWYF7ldoB03oA2gIR0CqJ2T2nKnvdX2UKGgGR0CIfGnRb8m8aAdN6ANoCEdAqjLD4QBgeHV9lChoBkdAiorIxpL26GgHTegDaAhHQKozBlXiiqR1fZQoaAZHQIe9TJwKjSJoB03oA2gIR0CqNY9aEBbOdX2UKGgGR0CJDZ8qnWJ8aAdN6ANoCEdAqjaWL5ylvnV9lChoBkdAjY1WR7qptWgHTegDaAhHQKo/BdeIEbJ1fZQoaAZHQIeXjgOz6adoB03oA2gIR0CqP0aCtihGdX2UKGgGR0CNeRld1MdtaAdN6ANoCEdAqkHlWwNb1XV9lChoBkdAiLI+DFqBVmgHTegDaAhHQKpC4h7E5yV1fZQoaAZHQI4z4BYFJQNoB03oA2gIR0CqTji4z7/GdX2UKGgGR0CPad5t3wCsaAdN6ANoCEdAqk53GIbfg3V9lChoBkdAjovWEsasIWgHTegDaAhHQKpQ/F6zE751fZQoaAZHQItfOObRWtFoB03oA2gIR0CqUfYT0xubdX2UKGgGR0CMf8YXwb2laAdN6ANoCEdAqlqAfMfRu3V9lChoBkdAjflIoVmBfGgHTegDaAhHQKpaxD50r9V1fZQoaAZHQIz7tAeJYT1oB03oA2gIR0CqXVx0dRzjdX2UKGgGR0CNjWHXVbzLaAdN6ANoCEdAql5TLpzLfXV9lChoBkdAj1J8afjCHmgHTegDaAhHQKppe1fmcON1fZQoaAZHQIm750nw5NpoB03oA2gIR0CqaeBJI1+BdX2UKGgGR0CIjCoy9EkTaAdN6ANoCEdAqmx5JTVDr3V9lChoBkdAjQF4tHxz72gHTegDaAhHQKptbigCfYl1fZQoaAZHQI152GwiaApoB03oA2gIR0CqdbOJcgQpdX2UKGgGR0CNYguieumraAdN6ANoCEdAqnX4+bExZnV9lChoBkdAjLaGtyPuHGgHTegDaAhHQKp4ivvjOs11fZQoaAZHQI1Tqt7rs0JoB03oA2gIR0CqeYJBHCoCdX2UKGgGR0CKHJrmhdt3aAdN6ANoCEdAqoQhvP1L8XV9lChoBkdAjETDN6gM+mgHTegDaAhHQKqEiKoAGSp1fZQoaAZHQId8C7qY7aJoB03oA2gIR0Cqh9oNVinYdX2UKGgGR0CIItneSB9UaAdN6ANoCEdAqojSv7m+03V9lChoBkdAjLuVcMVk+WgHTegDaAhHQKqROHFglWx1fZQoaAZHQIjyG1Bt1p1oB03oA2gIR0CqkXizkZJkdX2UKGgGR0CKQBt+CsfaaAdN6ANoCEdAqpQPoouwo3V9lChoBkdAiTzGFSKm9GgHTegDaAhHQKqVBakAPup1fZQoaAZHQIvyO+IuXeFoB03oA2gIR0Cqn0noPkJbdX2UKGgGR0CJ6AfeUILPaAdN6ANoCEdAqp+ukDZDiXV9lChoBkdAjD83Xyy2QWgHTegDaAhHQKqkPHggow51fZQoaAZHQI12AgzP8htoB03oA2gIR0CqpcpnHvMKdX2UKGgGR0CGjEdvsJIEaAdN6ANoCEdAqrAETpPhynV9lChoBkdAimEsOoYNzGgHTegDaAhHQKqwRFWn0kJ1fZQoaAZHQIpG6v5gw49oB03oA2gIR0CqssdmQKa5dX2UKGgGR0CKjL7Kq4pdaAdN6ANoCEdAqrO+ctoSMHV9lChoBkdAihcEi+tbLWgHTegDaAhHQKq8J5OafBh1fZQoaAZHQIeMSP0Zm7JoB03oA2gIR0CqvGhakhzOdX2UKGgGR0CLOzjJ+2E1aAdN6ANoCEdAqr8jM3ZPEnV9lChoBkdAhSENm16VuGgHTegDaAhHQKrAjzPKMeh1fZQoaAZHQIn0dzIV/MJoB03oA2gIR0Cqy0Hied08dX2UKGgGR0CEwz1VYISlaAdN6ANoCEdAqsuEQI2OyXV9lChoBkdAgtQmbb1yvWgHTegDaAhHQKrOFied07t1fZQoaAZHQIq/grpaA4JoB03oA2gIR0CqzxWjfvWpdX2UKGgGR0CHZOMir1dxaAdN6ANoCEdAqte4jD8+A3V9lChoBkdAiGmt7SiM52gHTegDaAhHQKrX+u7pV0d1fZQoaAZHQIlRyn1nM+xoB03oA2gIR0Cq2ohWgezVdX2UKGgGR0CJHpV0cOslaAdN6ANoCEdAqtufHPu5SXV9lChoBkdAjq+4MOPNmmgHTegDaAhHQKrnCVHFxXJ1fZQoaAZHQIu4vS6UaAFoB03oA2gIR0Cq50up84PxdX2UKGgGR0CKkp4Fiay9aAdN6ANoCEdAqunXc8DB/XV9lChoBkdAir00wSJ0n2gHTegDaAhHQKrq0kyDZlF1fZQoaAZHQI1etZid8RdoB03oA2gIR0Cq8xvECNjtdX2UKGgGR0CNpubCJoCdaAdN6ANoCEdAqvNcyk9EC3V9lChoBkdAiH4fQjUutmgHTegDaAhHQKr15ChvitJ1fZQoaAZHQI3IpoVVPvdoB03oA2gIR0Cq9ta/RE4OdX2UKGgGR0CIDNEb5uZUaAdN6ANoCEdAqwIF9lVcU3V9lChoBkdAg285OSGJvmgHTegDaAhHQKsCRSJCSid1fZQoaAZHQIQdH6be/HpoB03oA2gIR0CrBMSOR1YAdX2UKGgGR0CImSp9ZzPsaAdN6ANoCEdAqwW9DF6zFHVlLg=="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}