hplisiecki commited on
Commit
b4945dc
·
verified ·
1 Parent(s): 19b7ffa

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +4 -7
README.md CHANGED
@@ -59,22 +59,19 @@ A 10-fold cross-validation showed high reliability across different emotional di
59
  You can use the model and tokenizer as follows:
60
 
61
  ```python
62
- from transformers import AutoTokenizer, AutoModel
63
  import torch
64
 
65
  # Load the tokenizer
66
  tokenizer = AutoTokenizer.from_pretrained("hplisiecki/polemo-intensity")
67
 
68
  # Load the model
69
- model = AutoModel.from_pretrained("hplisiecki/polemo-intensity")
70
-
71
- # Define emotion columns
72
- emotion_columns = ['Happiness', 'Sadness', 'Anger', 'Disgust', 'Fear', 'Pride', 'Valence', 'Arousal']
73
 
74
  # Test the model with a sample input
75
  inputs = tokenizer("This is a test input.", return_tensors="pt")
76
- outputs = model(**inputs)
77
 
78
  # Print out the emotion ratings
79
- for emotion, rating in zip(emotion_columns, outputs):
80
  print(f"{emotion}: {rating.item()}")
 
59
  You can use the model and tokenizer as follows:
60
 
61
  ```python
62
+ from transformers import AutoTokenizer
63
  import torch
64
 
65
  # Load the tokenizer
66
  tokenizer = AutoTokenizer.from_pretrained("hplisiecki/polemo-intensity")
67
 
68
  # Load the model
69
+ model = Model.from_pretrained("hplisiecki/polemo-intensity")
 
 
 
70
 
71
  # Test the model with a sample input
72
  inputs = tokenizer("This is a test input.", return_tensors="pt")
73
+ outputs = model(inputs['input_ids'], inputs['attention_mask'])
74
 
75
  # Print out the emotion ratings
76
+ for emotion, rating in zip(['Happiness', 'Sadness', 'Anger', 'Disgust', 'Fear', 'Pride', 'Valence', 'Arousal'], outputs):
77
  print(f"{emotion}: {rating.item()}")