|
import numpy as np |
|
import torch |
|
import torch.distributed as dist |
|
import torch.nn as nn |
|
from einops import rearrange |
|
from .configuration_stdit2 import STDiT2Config |
|
from .layers import ( |
|
STDiT2Block, |
|
CaptionEmbedder, |
|
PatchEmbed3D, |
|
T2IFinalLayer, |
|
TimestepEmbedder, |
|
SizeEmbedder, |
|
PositionEmbedding2D |
|
) |
|
from rotary_embedding_torch import RotaryEmbedding |
|
from .utils import ( |
|
get_2d_sincos_pos_embed, |
|
approx_gelu |
|
) |
|
from transformers import PreTrainedModel |
|
|
|
|
|
class STDiT2(PreTrainedModel): |
|
|
|
config_class = STDiT2Config |
|
|
|
def __init__( |
|
self, |
|
config: STDiT2Config |
|
): |
|
super().__init__(config) |
|
self.pred_sigma = config.pred_sigma |
|
self.in_channels = config.in_channels |
|
self.out_channels = config.in_channels * 2 if config.pred_sigma else config.in_channels |
|
self.hidden_size = config.hidden_size |
|
self.num_heads = config.num_heads |
|
self.no_temporal_pos_emb = config.no_temporal_pos_emb |
|
self.depth = config.depth |
|
self.mlp_ratio = config.mlp_ratio |
|
self.enable_flash_attn = config.enable_flash_attn |
|
self.enable_layernorm_kernel = config.enable_layernorm_kernel |
|
self.enable_sequence_parallelism = config.enable_sequence_parallelism |
|
|
|
|
|
self.patch_size = config.patch_size |
|
self.input_size = config.input_size |
|
self.input_sq_size = config.input_sq_size |
|
self.pos_embed = PositionEmbedding2D(config.hidden_size) |
|
|
|
self.x_embedder = PatchEmbed3D(config.patch_size, config.in_channels, config.hidden_size) |
|
self.t_embedder = TimestepEmbedder(config.hidden_size) |
|
self.t_block = nn.Sequential(nn.SiLU(), nn.Linear(config.hidden_size, 6 * config.hidden_size, bias=True)) |
|
self.t_block_temp = nn.Sequential(nn.SiLU(), nn.Linear(config.hidden_size, 3 * config.hidden_size, bias=True)) |
|
self.y_embedder = CaptionEmbedder( |
|
in_channels=config.caption_channels, |
|
hidden_size=config.hidden_size, |
|
uncond_prob=config.class_dropout_prob, |
|
act_layer=approx_gelu, |
|
token_num=config.model_max_length, |
|
) |
|
|
|
drop_path = [x.item() for x in torch.linspace(0, config.drop_path, config.depth)] |
|
self.rope = RotaryEmbedding(dim=self.hidden_size // self.num_heads) |
|
self.blocks = nn.ModuleList( |
|
[ |
|
STDiT2Block( |
|
self.hidden_size, |
|
self.num_heads, |
|
mlp_ratio=self.mlp_ratio, |
|
drop_path=drop_path[i], |
|
enable_flash_attn=self.enable_flash_attn, |
|
enable_layernorm_kernel=self.enable_layernorm_kernel, |
|
enable_sequence_parallelism=self.enable_sequence_parallelism, |
|
rope=self.rope.rotate_queries_or_keys, |
|
qk_norm=config.qk_norm, |
|
) |
|
for i in range(self.depth) |
|
] |
|
) |
|
self.final_layer = T2IFinalLayer(config.hidden_size, np.prod(self.patch_size), self.out_channels) |
|
|
|
|
|
assert self.hidden_size % 3 == 0, "hidden_size must be divisible by 3" |
|
self.csize_embedder = SizeEmbedder(self.hidden_size // 3) |
|
self.ar_embedder = SizeEmbedder(self.hidden_size // 3) |
|
self.fl_embedder = SizeEmbedder(self.hidden_size) |
|
self.fps_embedder = SizeEmbedder(self.hidden_size) |
|
|
|
|
|
self.initialize_weights() |
|
self.initialize_temporal() |
|
if config.freeze is not None: |
|
assert config.freeze in ["not_temporal", "text"] |
|
if config.freeze == "not_temporal": |
|
self.freeze_not_temporal() |
|
elif config.freeze == "text": |
|
self.freeze_text() |
|
|
|
|
|
if self.enable_sequence_parallelism: |
|
self.sp_rank = dist.get_rank(get_sequence_parallel_group()) |
|
else: |
|
self.sp_rank = None |
|
|
|
def get_dynamic_size(self, x): |
|
_, _, T, H, W = x.size() |
|
if T % self.patch_size[0] != 0: |
|
T += self.patch_size[0] - T % self.patch_size[0] |
|
if H % self.patch_size[1] != 0: |
|
H += self.patch_size[1] - H % self.patch_size[1] |
|
if W % self.patch_size[2] != 0: |
|
W += self.patch_size[2] - W % self.patch_size[2] |
|
T = T // self.patch_size[0] |
|
H = H // self.patch_size[1] |
|
W = W // self.patch_size[2] |
|
return (T, H, W) |
|
|
|
def forward( |
|
self, x, timestep, y, mask=None, x_mask=None, num_frames=None, height=None, width=None, ar=None, fps=None |
|
): |
|
""" |
|
Forward pass of STDiT. |
|
Args: |
|
x (torch.Tensor): latent representation of video; of shape [B, C, T, H, W] |
|
timestep (torch.Tensor): diffusion time steps; of shape [B] |
|
y (torch.Tensor): representation of prompts; of shape [B, 1, N_token, C] |
|
mask (torch.Tensor): mask for selecting prompt tokens; of shape [B, N_token] |
|
|
|
Returns: |
|
x (torch.Tensor): output latent representation; of shape [B, C, T, H, W] |
|
""" |
|
B = x.shape[0] |
|
x = x.to(self.final_layer.linear.weight.dtype) |
|
timestep = timestep.to(self.final_layer.linear.weight.dtype) |
|
y = y.to(self.final_layer.linear.weight.dtype) |
|
|
|
|
|
|
|
|
|
hw = torch.cat([height[:, None], width[:, None]], dim=1) |
|
rs = (height[0].item() * width[0].item()) ** 0.5 |
|
csize = self.csize_embedder(hw, B) |
|
|
|
|
|
ar = ar.unsqueeze(1) |
|
ar = self.ar_embedder(ar, B) |
|
data_info = torch.cat([csize, ar], dim=1) |
|
|
|
|
|
fl = num_frames.unsqueeze(1) |
|
fps = fps.unsqueeze(1) |
|
fl = self.fl_embedder(fl, B) |
|
fl = fl + self.fps_embedder(fps, B) |
|
|
|
|
|
_, _, Tx, Hx, Wx = x.size() |
|
T, H, W = self.get_dynamic_size(x) |
|
S = H * W |
|
scale = rs / self.input_sq_size |
|
base_size = round(S**0.5) |
|
pos_emb = self.pos_embed(x, H, W, scale=scale, base_size=base_size) |
|
|
|
|
|
x = self.x_embedder(x) |
|
x = rearrange(x, "B (T S) C -> B T S C", T=T, S=S) |
|
x = x + pos_emb |
|
x = rearrange(x, "B T S C -> B (T S) C") |
|
|
|
|
|
if self.enable_sequence_parallelism: |
|
x = split_forward_gather_backward(x, get_sequence_parallel_group(), dim=1, grad_scale="down") |
|
|
|
|
|
t = self.t_embedder(timestep, dtype=x.dtype) |
|
t_spc = t + data_info |
|
t_tmp = t + fl |
|
t_spc_mlp = self.t_block(t_spc) |
|
t_tmp_mlp = self.t_block_temp(t_tmp) |
|
if x_mask is not None: |
|
t0_timestep = torch.zeros_like(timestep) |
|
t0 = self.t_embedder(t0_timestep, dtype=x.dtype) |
|
t0_spc = t0 + data_info |
|
t0_tmp = t0 + fl |
|
t0_spc_mlp = self.t_block(t0_spc) |
|
t0_tmp_mlp = self.t_block_temp(t0_tmp) |
|
else: |
|
t0_spc = None |
|
t0_tmp = None |
|
t0_spc_mlp = None |
|
t0_tmp_mlp = None |
|
|
|
|
|
y = self.y_embedder(y, self.training) |
|
|
|
if mask is not None: |
|
if mask.shape[0] != y.shape[0]: |
|
mask = mask.repeat(y.shape[0] // mask.shape[0], 1) |
|
mask = mask.squeeze(1).squeeze(1) |
|
y = y.squeeze(1).masked_select(mask.unsqueeze(-1) != 0).view(1, -1, x.shape[-1]) |
|
y_lens = mask.sum(dim=1).tolist() |
|
else: |
|
y_lens = [y.shape[2]] * y.shape[0] |
|
y = y.squeeze(1).view(1, -1, x.shape[-1]) |
|
|
|
|
|
for _, block in enumerate(self.blocks): |
|
x = block( |
|
x, |
|
y, |
|
t_spc_mlp, |
|
t_tmp_mlp, |
|
y_lens, |
|
x_mask, |
|
t0_spc_mlp, |
|
t0_tmp_mlp, |
|
T, |
|
S, |
|
) |
|
|
|
if self.enable_sequence_parallelism: |
|
x = gather_forward_split_backward(x, get_sequence_parallel_group(), dim=1, grad_scale="up") |
|
|
|
|
|
|
|
x = self.final_layer(x, t, x_mask, t0_spc, T, S) |
|
x = self.unpatchify(x, T, H, W, Tx, Hx, Wx) |
|
|
|
|
|
x = x.to(torch.float32) |
|
return x |
|
|
|
def unpatchify(self, x, N_t, N_h, N_w, R_t, R_h, R_w): |
|
""" |
|
Args: |
|
x (torch.Tensor): of shape [B, N, C] |
|
|
|
Return: |
|
x (torch.Tensor): of shape [B, C_out, T, H, W] |
|
""" |
|
|
|
|
|
T_p, H_p, W_p = self.patch_size |
|
x = rearrange( |
|
x, |
|
"B (N_t N_h N_w) (T_p H_p W_p C_out) -> B C_out (N_t T_p) (N_h H_p) (N_w W_p)", |
|
N_t=N_t, |
|
N_h=N_h, |
|
N_w=N_w, |
|
T_p=T_p, |
|
H_p=H_p, |
|
W_p=W_p, |
|
C_out=self.out_channels, |
|
) |
|
|
|
x = x[:, :, :R_t, :R_h, :R_w] |
|
return x |
|
|
|
def unpatchify_old(self, x): |
|
c = self.out_channels |
|
t, h, w = [self.input_size[i] // self.patch_size[i] for i in range(3)] |
|
pt, ph, pw = self.patch_size |
|
|
|
x = x.reshape(shape=(x.shape[0], t, h, w, pt, ph, pw, c)) |
|
x = rearrange(x, "n t h w r p q c -> n c t r h p w q") |
|
imgs = x.reshape(shape=(x.shape[0], c, t * pt, h * ph, w * pw)) |
|
return imgs |
|
|
|
def get_spatial_pos_embed(self, H, W, scale=1.0, base_size=None): |
|
pos_embed = get_2d_sincos_pos_embed( |
|
self.hidden_size, |
|
(H, W), |
|
scale=scale, |
|
base_size=base_size, |
|
) |
|
pos_embed = torch.from_numpy(pos_embed).float().unsqueeze(0).requires_grad_(False) |
|
return pos_embed |
|
|
|
def freeze_not_temporal(self): |
|
for n, p in self.named_parameters(): |
|
if "attn_temp" not in n: |
|
p.requires_grad = False |
|
|
|
def freeze_text(self): |
|
for n, p in self.named_parameters(): |
|
if "cross_attn" in n: |
|
p.requires_grad = False |
|
|
|
def initialize_temporal(self): |
|
for block in self.blocks: |
|
nn.init.constant_(block.attn_temp.proj.weight, 0) |
|
nn.init.constant_(block.attn_temp.proj.bias, 0) |
|
|
|
def initialize_weights(self): |
|
|
|
def _basic_init(module): |
|
if isinstance(module, nn.Linear): |
|
torch.nn.init.xavier_uniform_(module.weight) |
|
if module.bias is not None: |
|
nn.init.constant_(module.bias, 0) |
|
|
|
self.apply(_basic_init) |
|
|
|
|
|
w = self.x_embedder.proj.weight.data |
|
nn.init.xavier_uniform_(w.view([w.shape[0], -1])) |
|
|
|
|
|
nn.init.normal_(self.t_embedder.mlp[0].weight, std=0.02) |
|
nn.init.normal_(self.t_embedder.mlp[2].weight, std=0.02) |
|
nn.init.normal_(self.t_block[1].weight, std=0.02) |
|
nn.init.normal_(self.t_block_temp[1].weight, std=0.02) |
|
|
|
|
|
nn.init.normal_(self.y_embedder.y_proj.fc1.weight, std=0.02) |
|
nn.init.normal_(self.y_embedder.y_proj.fc2.weight, std=0.02) |
|
|
|
|
|
for block in self.blocks: |
|
nn.init.constant_(block.cross_attn.proj.weight, 0) |
|
nn.init.constant_(block.cross_attn.proj.bias, 0) |
|
|
|
|
|
nn.init.constant_(self.final_layer.linear.weight, 0) |
|
nn.init.constant_(self.final_layer.linear.bias, 0) |
|
|
|
|
|
|