File size: 10,160 Bytes
3485a6a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8d0ae18
 
 
 
3485a6a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ef4ac6
 
3485a6a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
import numpy as np
import torch
import torch.distributed as dist
import torch.nn as nn
from einops import rearrange
from .configuration_stdit import STDiTConfig
from .layers import (
    STDiTBlock,
    CaptionEmbedder,
    PatchEmbed3D,
    T2IFinalLayer,
    TimestepEmbedder,
)
from .utils import (
    approx_gelu,
    get_1d_sincos_pos_embed,
    get_2d_sincos_pos_embed,
)
from transformers import PreTrainedModel


class STDiT(PreTrainedModel):

    config_class = STDiTConfig

    def __init__(
        self,
        config
    ):
        super().__init__(config)
        self.pred_sigma = config.pred_sigma
        self.in_channels = config.in_channels
        self.out_channels = config.in_channels * 2 if config.pred_sigma else config.in_channels
        self.hidden_size = config.hidden_size
        self.patch_size = config.patch_size
        self.input_size = config.input_size
        num_patches = np.prod([config.input_size[i] // config.patch_size[i] for i in range(3)])
        self.num_patches = num_patches
        self.num_temporal = config.input_size[0] // config.patch_size[0]
        self.num_spatial = num_patches // self.num_temporal
        self.num_heads = config.num_heads
        self.no_temporal_pos_emb = config.no_temporal_pos_emb
        self.depth = config.depth
        self.mlp_ratio = config.mlp_ratio
        self.enable_flash_attn = config.enable_flash_attn
        self.enable_layernorm_kernel = config.enable_layernorm_kernel
        self.space_scale = config.space_scale
        self.time_scale = config.time_scale

        self.register_buffer("pos_embed", self.get_spatial_pos_embed())
        self.register_buffer("pos_embed_temporal", self.get_temporal_pos_embed())

        self.x_embedder = PatchEmbed3D(config.patch_size, config.in_channels, config.hidden_size)
        self.t_embedder = TimestepEmbedder(config.hidden_size)
        self.t_block = nn.Sequential(nn.SiLU(), nn.Linear(config.hidden_size, 6 * config.hidden_size, bias=True))
        self.y_embedder = CaptionEmbedder(
            in_channels=config.caption_channels,
            hidden_size=config.hidden_size,
            uncond_prob=config.class_dropout_prob,
            act_layer=approx_gelu,
            token_num=config.model_max_length,
        )

        drop_path = [x.item() for x in torch.linspace(0, config.drop_path, config.depth)]
        self.blocks = nn.ModuleList(
            [
                STDiTBlock(
                    self.hidden_size,
                    self.num_heads,
                    mlp_ratio=self.mlp_ratio,
                    drop_path=drop_path[i],
                    enable_flash_attn=self.enable_flash_attn,
                    enable_layernorm_kernel=self.enable_layernorm_kernel,
                    enable_sequence_parallelism=config.enable_sequence_parallelism,
                    d_t=self.num_temporal,
                    d_s=self.num_spatial,
                )
                for i in range(self.depth)
            ]
        )
        self.final_layer = T2IFinalLayer(config.hidden_size, np.prod(self.patch_size), self.out_channels)

        # init model
        self.initialize_weights()
        self.initialize_temporal()
        if config.freeze is not None:
            assert config.freeze in ["not_temporal", "text"]
            if config.freeze == "not_temporal":
                self.freeze_not_temporal()
            elif config.freeze == "text":
                self.freeze_text()

        # sequence parallel related configs
        self.enable_sequence_parallelism = config.enable_sequence_parallelism
        if config.enable_sequence_parallelism:
            self.sp_rank = dist.get_rank(get_sequence_parallel_group())
        else:
            self.sp_rank = None

    def forward(self, x, timestep, y, mask=None):
        """
        Forward pass of STDiT.
        Args:
            x (torch.Tensor): latent representation of video; of shape [B, C, T, H, W]
            timestep (torch.Tensor): diffusion time steps; of shape [B]
            y (torch.Tensor): representation of prompts; of shape [B, 1, N_token, C]
            mask (torch.Tensor): mask for selecting prompt tokens; of shape [B, N_token]

        Returns:
            x (torch.Tensor): output latent representation; of shape [B, C, T, H, W]
        """
        x = x.to(self.final_layer.linear.weight.dtype)
        timestep = timestep.to(self.final_layer.linear.weight.dtype)
        y = y.to(self.final_layer.linear.weight.dtype)

        # embedding
        x = self.x_embedder(x)  # [B, N, C]
        x = rearrange(x, "B (T S) C -> B T S C", T=self.num_temporal, S=self.num_spatial)
        x = x + self.pos_embed
        x = rearrange(x, "B T S C -> B (T S) C")

        # shard over the sequence dim if sp is enabled
        if self.enable_sequence_parallelism:
            x = split_forward_gather_backward(x, get_sequence_parallel_group(), dim=1, grad_scale="down")

        t = self.t_embedder(timestep, dtype=x.dtype)  # [B, C]
        t0 = self.t_block(t)  # [B, C]
        y = self.y_embedder(y, self.training)  # [B, 1, N_token, C]

        if mask is not None:
            if mask.shape[0] != y.shape[0]:
                mask = mask.repeat(y.shape[0] // mask.shape[0], 1)
            mask = mask.squeeze(1).squeeze(1)
            y = y.squeeze(1).masked_select(mask.unsqueeze(-1) != 0).view(1, -1, x.shape[-1])
            y_lens = mask.sum(dim=1).tolist()
        else:
            y_lens = [y.shape[2]] * y.shape[0]
            y = y.squeeze(1).view(1, -1, x.shape[-1])

        # blocks
        for i, block in enumerate(self.blocks):
            if i == 0:
                if self.enable_sequence_parallelism:
                    tpe = torch.chunk(
                        self.pos_embed_temporal, dist.get_world_size(get_sequence_parallel_group()), dim=1
                    )[self.sp_rank].contiguous()
                else:
                    tpe = self.pos_embed_temporal
            else:
                tpe = None
            x = block(x, y, t0, y_lens, tpe)
            # x = auto_grad_checkpoint(block, x, y, t0, y_lens, tpe)

        if self.enable_sequence_parallelism:
            x = gather_forward_split_backward(x, get_sequence_parallel_group(), dim=1, grad_scale="up")
        # x.shape: [B, N, C]

        # final process
        x = self.final_layer(x, t)  # [B, N, C=T_p * H_p * W_p * C_out]
        x = self.unpatchify(x)  # [B, C_out, T, H, W]

        # cast to float32 for better accuracy
        x = x.to(torch.float32)
        return x

    def unpatchify(self, x):
        """
        Args:
            x (torch.Tensor): of shape [B, N, C]

        Return:
            x (torch.Tensor): of shape [B, C_out, T, H, W]
        """

        N_t, N_h, N_w = [self.input_size[i] // self.patch_size[i] for i in range(3)]
        T_p, H_p, W_p = self.patch_size
        x = rearrange(
            x,
            "B (N_t N_h N_w) (T_p H_p W_p C_out) -> B C_out (N_t T_p) (N_h H_p) (N_w W_p)",
            N_t=N_t,
            N_h=N_h,
            N_w=N_w,
            T_p=T_p,
            H_p=H_p,
            W_p=W_p,
            C_out=self.out_channels,
        )
        return x

    def unpatchify_old(self, x):
        c = self.out_channels
        t, h, w = [self.input_size[i] // self.patch_size[i] for i in range(3)]
        pt, ph, pw = self.patch_size

        x = x.reshape(shape=(x.shape[0], t, h, w, pt, ph, pw, c))
        x = rearrange(x, "n t h w r p q c -> n c t r h p w q")
        imgs = x.reshape(shape=(x.shape[0], c, t * pt, h * ph, w * pw))
        return imgs

    def get_spatial_pos_embed(self, grid_size=None):
        if grid_size is None:
            grid_size = self.input_size[1:]
        pos_embed = get_2d_sincos_pos_embed(
            self.hidden_size,
            (grid_size[0] // self.patch_size[1], grid_size[1] // self.patch_size[2]),
            scale=self.space_scale,
        )
        pos_embed = torch.from_numpy(pos_embed).float().unsqueeze(0).requires_grad_(False)
        return pos_embed

    def get_temporal_pos_embed(self):
        pos_embed = get_1d_sincos_pos_embed(
            self.hidden_size,
            self.input_size[0] // self.patch_size[0],
            scale=self.time_scale,
        )
        pos_embed = torch.from_numpy(pos_embed).float().unsqueeze(0).requires_grad_(False)
        return pos_embed

    def freeze_not_temporal(self):
        for n, p in self.named_parameters():
            if "attn_temp" not in n:
                p.requires_grad = False

    def freeze_text(self):
        for n, p in self.named_parameters():
            if "cross_attn" in n:
                p.requires_grad = False

    def initialize_temporal(self):
        for block in self.blocks:
            nn.init.constant_(block.attn_temp.proj.weight, 0)
            nn.init.constant_(block.attn_temp.proj.bias, 0)

    def initialize_weights(self):
        # Initialize transformer layers:
        def _basic_init(module):
            if isinstance(module, nn.Linear):
                torch.nn.init.xavier_uniform_(module.weight)
                if module.bias is not None:
                    nn.init.constant_(module.bias, 0)

        self.apply(_basic_init)

        # Initialize patch_embed like nn.Linear (instead of nn.Conv2d):
        w = self.x_embedder.proj.weight.data
        nn.init.xavier_uniform_(w.view([w.shape[0], -1]))

        # Initialize timestep embedding MLP:
        nn.init.normal_(self.t_embedder.mlp[0].weight, std=0.02)
        nn.init.normal_(self.t_embedder.mlp[2].weight, std=0.02)
        nn.init.normal_(self.t_block[1].weight, std=0.02)

        # Initialize caption embedding MLP:
        nn.init.normal_(self.y_embedder.y_proj.fc1.weight, std=0.02)
        nn.init.normal_(self.y_embedder.y_proj.fc2.weight, std=0.02)

        # Zero-out adaLN modulation layers in PixArt blocks:
        for block in self.blocks:
            nn.init.constant_(block.cross_attn.proj.weight, 0)
            nn.init.constant_(block.cross_attn.proj.bias, 0)

        # Zero-out output layers:
        nn.init.constant_(self.final_layer.linear.weight, 0)
        nn.init.constant_(self.final_layer.linear.bias, 0)