--- license: apache-2.0 pipeline_tag: text-classification --- # ONNX O4 Version of BGE-RERANKER-V2 ```python pairs = [['Odio comer manzana.','I reallly like eating apple'],['I reallly like eating apple', 'Realmente me gusta comer manzana.'], ['I reallly like eating apple', 'I hate apples'],['Las manzanas son geniales.','Realmente me gusta comer manzana.']] from optimum.onnxruntime import ORTModelForFeatureExtraction,ORTModelForSequenceClassification from transformers import AutoTokenizer model_checkpoint = "onnxO4_bge_reranker_v2_m3" ort_model = ORTModelForSequenceClassification.from_pretrained(model_checkpoint) tokenizer = AutoTokenizer.from_pretrained(model_checkpoint) # ONNX Results import torch with torch.no_grad(): inputs = tokenizer(pairs, padding=True, truncation=True, return_tensors='pt', max_length=512) scores = ort_model(**inputs, return_dict=True).logits.view(-1, ).float() print(scores) ## tensor([ -9.5081, -3.9569, -10.8632, 0.3756]) # Original non quantized from transformers import AutoModelForSequenceClassification, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-reranker-v2-m3') model = AutoModelForSequenceClassification.from_pretrained('BAAI/bge-reranker-v2-m3') model.eval() with torch.no_grad(): inputs = tokenizer(pairs, padding=True, truncation=True, return_tensors='pt', max_length=512) scores = model(**inputs, return_dict=True).logits.view(-1, ).float() print(scores) ## tensor([ -9.4973, -3.9538, -10.8504, 0.3660]) ```