--- license: apache-2.0 base_model: openai/whisper-large-v3 tags: - generated_from_trainer datasets: - p6_moderate metrics: - wer model-index: - name: p6_moderate results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: p6_moderate type: p6_moderate config: cs split: test args: cs metrics: - name: Wer type: wer value: 0.2500697155605131 --- # p6_moderate This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co./openai/whisper-large-v3) on the p6_moderate dataset. It achieves the following results on the evaluation set: - Loss: 0.8973 - Wer: 0.2501 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 0.0015 | 27.78 | 1000 | 0.7347 | 0.2520 | | 0.0008 | 55.56 | 2000 | 0.7309 | 0.2523 | | 0.0001 | 83.33 | 3000 | 0.8548 | 0.2531 | | 0.0 | 111.11 | 4000 | 0.8869 | 0.2503 | | 0.0 | 138.89 | 5000 | 0.8973 | 0.2501 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.1.2+cu121 - Datasets 2.16.1 - Tokenizers 0.15.1