File size: 2,155 Bytes
4b0c02f
 
 
 
 
 
eda97c1
4b0c02f
 
 
 
 
 
 
 
 
eda97c1
 
4b0c02f
 
 
 
 
 
 
 
 
 
 
 
 
 
eda97c1
4b0c02f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
---
license: apache-2.0
base_model: honzapucalek/p6_commonvoice_16_1
tags:
- generated_from_trainer
datasets:
- honzapucalek/p6_impaired_v2
metrics:
- wer
model-index:
- name: p6_commonvoice_impaired
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: honzapucalek/p6_impaired_v2 cs
      type: honzapucalek/p6_impaired_v2
      config: cs
      split: test
      args: cs
    metrics:
    - name: Wer
      type: wer
      value: 0.41563311220074994
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# p6_commonvoice_impaired

This model is a fine-tuned version of [honzapucalek/p6_commonvoice_16_1](https://huggingface.co./honzapucalek/p6_commonvoice_16_1) on the honzapucalek/p6_impaired_v2 cs dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3476
- Wer: 0.4156

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer    |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.0078        | 14.93 | 1000 | 1.1002          | 0.4759 |
| 0.0007        | 29.85 | 2000 | 1.2277          | 0.4332 |
| 0.0012        | 44.78 | 3000 | 1.1811          | 0.4381 |
| 0.0001        | 59.7  | 4000 | 1.3258          | 0.4200 |
| 0.0001        | 74.63 | 5000 | 1.3476          | 0.4156 |


### Framework versions

- Transformers 4.37.2
- Pytorch 2.1.2+cu121
- Datasets 2.16.1
- Tokenizers 0.15.1