--- license: apache-2.0 base_model: openai/whisper-large-v3 tags: - generated_from_trainer datasets: - honzapucalek/impaired_v3_independent_moderate metrics: - wer model-index: - name: impaired-v3-independent-moderate results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: honzapucalek/impaired_v3_independent_moderate cs type: honzapucalek/impaired_v3_independent_moderate config: cs split: test args: cs metrics: - name: Wer type: wer value: 0.19775357385976855 --- # impaired-v3-independent-moderate This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co./openai/whisper-large-v3) on the honzapucalek/impaired_v3_independent_moderate cs dataset. It achieves the following results on the evaluation set: - Loss: 0.6960 - Wer: 0.1978 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 0.0012 | 22.47 | 1000 | 0.5175 | 0.1984 | | 0.0001 | 44.94 | 2000 | 0.6260 | 0.1995 | | 0.0 | 67.42 | 3000 | 0.6666 | 0.1986 | | 0.0 | 89.89 | 4000 | 0.6882 | 0.1978 | | 0.0 | 112.36 | 5000 | 0.6960 | 0.1978 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.1.2+cu121 - Datasets 2.16.1 - Tokenizers 0.15.1