--- license: apache-2.0 base_model: openai/whisper-large-v3 tags: - generated_from_trainer datasets: - honzapucalek/hc_impaired_all_v3 metrics: - wer model-index: - name: hc-impaired-all-v3 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: honzapucalek/hc_impaired_all_v3 cs type: honzapucalek/hc_impaired_all_v3 config: cs split: test args: cs metrics: - name: Wer type: wer value: 0.11072981011210249 --- # hc-impaired-all-v3 This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co./openai/whisper-large-v3) on the honzapucalek/hc_impaired_all_v3 cs dataset. It achieves the following results on the evaluation set: - Loss: 0.3837 - Wer: 0.1107 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.0275 | 6.87 | 1000 | 0.2212 | 0.1163 | | 0.0021 | 13.75 | 2000 | 0.3051 | 0.1123 | | 0.0004 | 20.62 | 3000 | 0.3517 | 0.1113 | | 0.0001 | 27.49 | 4000 | 0.3760 | 0.1104 | | 0.0001 | 34.36 | 5000 | 0.3837 | 0.1107 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.1.2+cu121 - Datasets 2.16.1 - Tokenizers 0.15.1