Update README.md
Browse files
README.md
CHANGED
@@ -11,128 +11,49 @@ model-index:
|
|
11 |
results: []
|
12 |
---
|
13 |
|
14 |
-
|
15 |
-
should probably proofread and complete it, then remove this comment. -->
|
16 |
|
17 |
# CantoneseLLMChat-v1.0-7B
|
18 |
|
19 |
-
|
20 |
-
|
21 |
-
|
|
|
|
|
22 |
|
23 |
## Model description
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
More information needed
|
30 |
-
|
31 |
-
## Training and evaluation data
|
32 |
-
|
33 |
-
More information needed
|
34 |
-
|
35 |
-
## Training procedure
|
36 |
-
|
37 |
-
### Training hyperparameters
|
38 |
-
|
39 |
-
The following hyperparameters were used during training:
|
40 |
-
- learning_rate: 1e-05
|
41 |
-
- train_batch_size: 4
|
42 |
-
- eval_batch_size: 4
|
43 |
-
- seed: 42
|
44 |
-
- gradient_accumulation_steps: 8
|
45 |
-
- total_train_batch_size: 32
|
46 |
-
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
47 |
-
- lr_scheduler_type: cosine
|
48 |
-
- lr_scheduler_warmup_ratio: 0.3
|
49 |
-
- num_epochs: 3.0
|
50 |
-
|
51 |
-
### Training results
|
52 |
-
|
53 |
-
| Training Loss | Epoch | Step | Validation Loss |
|
54 |
-
|:-------------:|:------:|:----:|:---------------:|
|
55 |
-
| 1.3332 | 0.0480 | 100 | 1.3140 |
|
56 |
-
| 1.2185 | 0.0960 | 200 | 1.2879 |
|
57 |
-
| 1.1976 | 0.1439 | 300 | 1.2533 |
|
58 |
-
| 1.1627 | 0.1919 | 400 | 1.2169 |
|
59 |
-
| 1.178 | 0.2399 | 500 | 1.1766 |
|
60 |
-
| 1.133 | 0.2879 | 600 | 1.1296 |
|
61 |
-
| 1.0466 | 0.3359 | 700 | 1.0983 |
|
62 |
-
| 1.0657 | 0.3839 | 800 | 1.0770 |
|
63 |
-
| 1.054 | 0.4318 | 900 | 1.0617 |
|
64 |
-
| 1.0744 | 0.4798 | 1000 | 1.0487 |
|
65 |
-
| 0.9977 | 0.5278 | 1100 | 1.0383 |
|
66 |
-
| 0.9778 | 0.5758 | 1200 | 1.0290 |
|
67 |
-
| 1.0187 | 0.6238 | 1300 | 1.0211 |
|
68 |
-
| 1.085 | 0.6717 | 1400 | 1.0131 |
|
69 |
-
| 0.958 | 0.7197 | 1500 | 1.0072 |
|
70 |
-
| 1.0482 | 0.7677 | 1600 | 1.0007 |
|
71 |
-
| 0.9447 | 0.8157 | 1700 | 0.9946 |
|
72 |
-
| 1.0 | 0.8637 | 1800 | 0.9894 |
|
73 |
-
| 0.9685 | 0.9117 | 1900 | 0.9849 |
|
74 |
-
| 0.8576 | 0.9596 | 2000 | 0.9807 |
|
75 |
-
| 0.8853 | 1.0076 | 2100 | 0.9775 |
|
76 |
-
| 0.947 | 1.0556 | 2200 | 0.9739 |
|
77 |
-
| 0.9207 | 1.1036 | 2300 | 0.9713 |
|
78 |
-
| 0.8596 | 1.1516 | 2400 | 0.9691 |
|
79 |
-
| 1.0277 | 1.1995 | 2500 | 0.9655 |
|
80 |
-
| 0.9646 | 1.2475 | 2600 | 0.9631 |
|
81 |
-
| 0.8583 | 1.2955 | 2700 | 0.9613 |
|
82 |
-
| 0.9367 | 1.3435 | 2800 | 0.9589 |
|
83 |
-
| 0.9146 | 1.3915 | 2900 | 0.9570 |
|
84 |
-
| 0.9697 | 1.4395 | 3000 | 0.9556 |
|
85 |
-
| 0.8713 | 1.4874 | 3100 | 0.9542 |
|
86 |
-
| 0.9855 | 1.5354 | 3200 | 0.9524 |
|
87 |
-
| 0.8651 | 1.5834 | 3300 | 0.9511 |
|
88 |
-
| 0.9448 | 1.6314 | 3400 | 0.9495 |
|
89 |
-
| 0.8997 | 1.6794 | 3500 | 0.9485 |
|
90 |
-
| 1.0446 | 1.7273 | 3600 | 0.9475 |
|
91 |
-
| 0.8862 | 1.7753 | 3700 | 0.9465 |
|
92 |
-
| 0.873 | 1.8233 | 3800 | 0.9456 |
|
93 |
-
| 0.9893 | 1.8713 | 3900 | 0.9448 |
|
94 |
-
| 0.8915 | 1.9193 | 4000 | 0.9442 |
|
95 |
-
| 0.8854 | 1.9673 | 4100 | 0.9435 |
|
96 |
-
| 0.7608 | 2.0152 | 4200 | 0.9447 |
|
97 |
-
| 0.796 | 2.0632 | 4300 | 0.9464 |
|
98 |
-
| 0.9225 | 2.1112 | 4400 | 0.9467 |
|
99 |
-
| 0.9901 | 2.1592 | 4500 | 0.9467 |
|
100 |
-
| 0.9263 | 2.2072 | 4600 | 0.9468 |
|
101 |
-
| 0.7735 | 2.2551 | 4700 | 0.9467 |
|
102 |
-
| 0.8454 | 2.3031 | 4800 | 0.9464 |
|
103 |
-
| 0.8562 | 2.3511 | 4900 | 0.9466 |
|
104 |
-
| 0.8923 | 2.3991 | 5000 | 0.9464 |
|
105 |
-
| 0.7529 | 2.4471 | 5100 | 0.9463 |
|
106 |
-
| 0.8421 | 2.4951 | 5200 | 0.9463 |
|
107 |
-
| 0.8578 | 2.5430 | 5300 | 0.9463 |
|
108 |
-
| 0.8143 | 2.5910 | 5400 | 0.9464 |
|
109 |
-
| 0.8117 | 2.6390 | 5500 | 0.9463 |
|
110 |
-
| 0.861 | 2.6870 | 5600 | 0.9464 |
|
111 |
-
| 0.8415 | 2.7350 | 5700 | 0.9463 |
|
112 |
-
| 0.7846 | 2.7829 | 5800 | 0.9463 |
|
113 |
-
| 0.7605 | 2.8309 | 5900 | 0.9464 |
|
114 |
-
| 0.8721 | 2.8789 | 6000 | 0.9464 |
|
115 |
-
| 0.8566 | 2.9269 | 6100 | 0.9464 |
|
116 |
-
| 0.7978 | 2.9749 | 6200 | 0.9464 |
|
117 |
-
|
118 |
-
|
119 |
-
### Framework versions
|
120 |
-
|
121 |
-
- Transformers 4.45.0
|
122 |
-
- Pytorch 2.4.1+cu121
|
123 |
-
- Datasets 2.20.0
|
124 |
-
- Tokenizers 0.20.0
|
125 |
-
|
126 |
-
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
|
127 |
-
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_hon9kon9ize__CantoneseLLMChat-v1.0-7B)
|
128 |
-
|
129 |
-
| Metric |Value|
|
130 |
-
|-------------------|----:|
|
131 |
-
|Avg. |22.98|
|
132 |
-
|IFEval (0-Shot) |44.55|
|
133 |
-
|BBH (3-Shot) |28.54|
|
134 |
-
|MATH Lvl 5 (4-Shot)|17.90|
|
135 |
-
|GPQA (0-shot) | 9.62|
|
136 |
-
|MuSR (0-shot) | 6.30|
|
137 |
-
|MMLU-PRO (5-shot) |30.94|
|
138 |
|
|
|
|
|
|
11 |
results: []
|
12 |
---
|
13 |
|
14 |
+
|
|
|
15 |
|
16 |
# CantoneseLLMChat-v1.0-7B
|
17 |
|
18 |
+
![front_image](cantonese_llm_v1.jpg)
|
19 |
+
|
20 |
+
|
21 |
+
Cantonese LLM Chat v1.0 is the first generation Cantonese LLM from hon0kon9ize.
|
22 |
+
Building upon the sucess of [v0.5 preview](https://huggingface.co/hon9kon9ize/CantoneseLLMChat-v0.5), the model excels in Hong Kong related specific knowledge and Cantonese conversation.
|
23 |
|
24 |
## Model description
|
25 |
+
Base model obtained via Continuous Pre-Training of [Qwen 2.5 7B](https://huggingface.co/Qwen/Qwen2.5-7B) with 600 millions publicaly available Hong Kong news articles and Cantonese websites.
|
26 |
+
Instructions fine-tuned model trained with a dataset consists of 75,000 instrutions pairs. 45,000 pairs were Cantonese insturctions generated by other LLMs and reviewed by humans.
|
27 |
+
|
28 |
+
The model trained with 1 Nvidia H100 80GB HBM3 GPU on [Genkai Supercomputer](https://www.cc.kyushu-u.ac.jp/scp/eng/system/Genkai/hardware/).
|
29 |
+
|
30 |
+
## Basic Usage
|
31 |
+
```
|
32 |
+
import torch
|
33 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
34 |
+
|
35 |
+
model_id = "hon9kon9ize/CantoneseLLMChat-v1.0-7B"
|
36 |
+
|
37 |
+
|
38 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
39 |
+
model = AutoModelForCausalLM.from_pretrained(
|
40 |
+
model_id,
|
41 |
+
torch_dtype=torch.bfloat16,
|
42 |
+
device_map="auto",
|
43 |
+
)
|
44 |
+
|
45 |
+
def chat(messages, temperature=0.9, max_new_tokens=200):
|
46 |
+
input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=True, add_generation_prompt=True, return_tensors='pt').to('cuda:0')
|
47 |
+
output_ids = model.generate(input_ids, max_new_tokens=max_new_tokens, temperature=temperature)
|
48 |
+
response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=False)
|
49 |
+
return response
|
50 |
+
|
51 |
+
prompt = "邊個係香港特首?"
|
52 |
|
53 |
+
messages = [
|
54 |
+
{"role": "system", "content": "you are a helpful assistant."},
|
55 |
+
{"role": "user", "content": prompt}
|
56 |
+
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
|
58 |
+
print(chat(messages)) # 香港特別行政區行政長官係李家超。<|im_end|>
|
59 |
+
```
|