import torch from transformers import AutoTokenizer, AutoModelForCausalLM from typing import Dict, Any class EndpointHandler: def __init__(self): self.tokenizer = None self.model = None self.device = "cuda" if torch.cuda.is_available() else "cpu" def __call__(self, data: Dict[str, Any]) -> Dict[str, Any]: """使 handler 可調用""" inputs = self.preprocess(data) outputs = self.inference(inputs) return self.postprocess(outputs) def initialize(self, context): """初始化模型和 tokenizer""" self.tokenizer = AutoTokenizer.from_pretrained( "homer7676/FrierenChatbotV1", trust_remote_code=True ) self.model = AutoModelForCausalLM.from_pretrained( "homer7676/FrierenChatbotV1", trust_remote_code=True, torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32 ).to(self.device) self.model.eval() def preprocess(self, data: Dict[str, Any]) -> Dict[str, Any]: """預處理輸入數據""" inputs = data.pop("inputs", data) if not isinstance(inputs, dict): inputs = {"message": inputs} return inputs def inference(self, inputs: Dict[str, Any]) -> Dict[str, Any]: """執行推理""" try: message = inputs.get("message", "") context = inputs.get("context", "") prompt = f"""你是芙莉蓮,需要遵守以下規則回答: 1. 身份設定: - 千年精靈魔法師 - 態度溫柔但帶著些許嘲諷 - 說話優雅且有距離感 2. 重要關係: - 弗蘭梅是我的師傅 - 費倫是我的學生 - 欣梅爾是我的摯友 - 海塔是我的故友 3. 回答規則: - 使用繁體中文 - 必須提供具體詳細的內容 - 保持回答的連貫性和完整性 相關資訊:{context} 用戶:{message} 芙莉蓮:""" inputs = self.tokenizer( prompt, return_tensors="pt", padding=True, truncation=True, max_length=2048 ).to(self.device) with torch.no_grad(): outputs = self.model.generate( **inputs, max_new_tokens=256, temperature=0.7, top_p=0.9, top_k=50, do_sample=True, repetition_penalty=1.2, pad_token_id=self.tokenizer.pad_token_id, eos_token_id=self.tokenizer.eos_token_id ) response = self.tokenizer.decode(outputs[0], skip_special_tokens=True) response = response.split("芙莉蓮:")[-1].strip() return {"generated_text": response} except Exception as e: print(f"推理過程錯誤: {str(e)}") return {"error": str(e)} def postprocess(self, data: Dict[str, Any]) -> Dict[str, Any]: """後處理輸出數據""" return data