Audio-to-Audio
Safetensors
English
llama
sound language model
File size: 6,157 Bytes
99f8c7a
decf644
 
 
 
 
 
 
99f8c7a
 
 
 
decf644
99f8c7a
decf644
99f8c7a
decf644
99f8c7a
decf644
99f8c7a
decf644
99f8c7a
decf644
99f8c7a
decf644
99f8c7a
decf644
99f8c7a
decf644
99f8c7a
decf644
99f8c7a
 
 
decf644
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
99f8c7a
decf644
99f8c7a
decf644
99f8c7a
decf644
 
 
 
 
 
 
99f8c7a
decf644
 
99f8c7a
decf644
 
 
 
99f8c7a
decf644
 
99f8c7a
decf644
99f8c7a
decf644
99f8c7a
decf644
 
 
 
 
 
 
99f8c7a
decf644
99f8c7a
decf644
 
 
 
 
 
 
99f8c7a
decf644
99f8c7a
decf644
8ca86d2
decf644
 
99f8c7a
decf644
99f8c7a
decf644
99f8c7a
decf644
 
 
 
 
 
 
 
 
 
 
99f8c7a
 
fa29dd6
99f8c7a
fa29dd6
99f8c7a
 
decf644
99f8c7a
 
 
decf644
 
 
 
 
 
 
 
99f8c7a
decf644
99f8c7a
decf644
99f8c7a
decf644
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
---
datasets:
- homebrewltd/instruction-speech-whispervq-v2
language:
- en
license: apache-2.0
tags:
- sound language model
---

## Model Details

We have developed and released the family [Ichigo-llama3s](https://huggingface.co./collections/homebrew-research/llama3-s-669df2139f0576abc6eb7405). This family is natively understanding audio and text input.

This model focused on fine-tuning the model to improve user interaction from [homebrewltd/Ichigo-llama3.1-s-instruct-v0.3-phase-2](https://huggingface.co./homebrewltd/Ichigo-llama3.1-s-instruct-v0.3-phase-2), particularly in handling inaudible inputs and multi-turn conversations.

**Model developers** Homebrew Research.

**Input** Text and sound.

**Output** Text.

**Model Architecture** Llama-3.

**Language(s):** English.

## Intended Use

**Intended Use Cases** This family is primarily intended for research applications. This version aims to further improve the LLM on sound understanding capabilities.

**Out-of-scope** The use of llama3-s in any manner that violates applicable laws or regulations is strictly prohibited.

## How to Get Started with the Model

Try this model using [Google Colab Notebook](https://colab.research.google.com/drive/18IiwN0AzBZaox5o0iidXqWD1xKq11XbZ?usp=sharing).

First, we need to convert the audio file to sound tokens

```python
device = "cuda" if torch.cuda.is_available() else "cpu"
if not os.path.exists("whisper-vq-stoks-medium-en+pl-fixed.model"):
    hf_hub_download(
        repo_id="jan-hq/WhisperVQ",
        filename="whisper-vq-stoks-medium-en+pl-fixed.model",
        local_dir=".",
    )
vq_model = RQBottleneckTransformer.load_model(
        "whisper-vq-stoks-medium-en+pl-fixed.model"
    ).to(device)
vq_model.ensure_whisper(device)
def audio_to_sound_tokens(audio_path, target_bandwidth=1.5, device=device):

    wav, sr = torchaudio.load(audio_path)
    if sr != 16000:
        wav = torchaudio.functional.resample(wav, sr, 16000)
    with torch.no_grad():
        codes = vq_model.encode_audio(wav.to(device))
        codes = codes[0].cpu().tolist()

    result = ''.join(f'<|sound_{num:04d}|>' for num in codes)
    return f'<|sound_start|>{result}<|sound_end|>'
```

Then, we can inference the model the same as any other LLM.

```python
def setup_pipeline(model_path, use_4bit=False, use_8bit=False):
    tokenizer = AutoTokenizer.from_pretrained(model_path)

    model_kwargs = {"device_map": "auto"}

    if use_4bit:
        model_kwargs["quantization_config"] = BitsAndBytesConfig(
            load_in_4bit=True,
            bnb_4bit_compute_dtype=torch.bfloat16,
            bnb_4bit_use_double_quant=True,
            bnb_4bit_quant_type="nf4",
        )
    elif use_8bit:
        model_kwargs["quantization_config"] = BitsAndBytesConfig(
            load_in_8bit=True,
            bnb_8bit_compute_dtype=torch.bfloat16,
            bnb_8bit_use_double_quant=True,
        )
    else:
        model_kwargs["torch_dtype"] = torch.bfloat16

    model = AutoModelForCausalLM.from_pretrained(model_path, **model_kwargs)

    return pipeline("text-generation", model=model, tokenizer=tokenizer)

def generate_text(pipe, messages, max_new_tokens=64, temperature=0.0, do_sample=False):
    generation_args = {
        "max_new_tokens": max_new_tokens,
        "return_full_text": False,
        "temperature": temperature,
        "do_sample": do_sample,
    }

    output = pipe(messages, **generation_args)
    return output[0]['generated_text']

# Usage
llm_path = "homebrewltd/llama3.1-s-instruct-v0.2"
pipe = setup_pipeline(llm_path, use_8bit=True)
```

## Training process
**Training Metrics Image**: Below is a snapshot of the training loss curve visualized.

![image/png](https://cdn-uploads.huggingface.co/production/uploads/65713d70f56f9538679e5a56/7TWPqLdDLDlfzeRXP9m36.png)

**[MMLU](https://huggingface.co./datasets/cais/mmlu)**:

| Model | MMLU Score |
| --- | --- |
| llama3.5-instruct-8b | 69.40 |
| ichigo-llama3.1-s-v0.3: phase 3 | **63.79** |
| ichigo-llama3.1-s-v0.3: phase 2 | 63.08 |
| ichigo-llama3.1-s-base-v0.3 | 42.11 |
| llama3.5-instruct-v0.2 | 50.27 |

**[AudioBench](https://arxiv.org/abs/2406.16020) Eval**:

| Model Bench | [Open-hermes Instruction Audio](https://huggingface.co./datasets/AudioLLMs/openhermes_instruction_test) (GPT-4-O judge 0:5) | [Alpaca Instruction Audio](https://huggingface.co./datasets/AudioLLMs/alpaca_audio_test) (GPT-4-O judge 0:5) |
| --- | --- | --- |
| [Llama3.1-s-v2](https://huggingface.co./homebrewltd/llama3-s-instruct-v0.2) | 3.45 | 3.53 |
| [Ichigo-llama3.1-s v0.3-phase2 -cp7000](https://huggingface.co./homebrewltd/Ichigo-llama3.1-s-instruct-v0.3-phase-2) | 3.42 | 3.62 |
| [Ichigo-llama3.1-s v0.3-phase2-cplast](https://huggingface.co./jan-hq/llama3-s-instruct-v0.3-checkpoint-last) | 3.31 | 3.6 |
| [Ichigo-llama3.1-s v0.3-phase3](https://huggingface.co./homebrewltd/Ichigo-llama3.1-s-instruct-v0.3-phase-3) | **3.64** | **3.68** |
| [Qwen2-audio-7B](https://huggingface.co./Qwen/Qwen2-Audio-7B) | 2.63 | 2.24 |

### Hardware

**GPU Configuration**: Cluster of 8x NVIDIA H100-SXM-80GB.

**GPU Usage**:
  - **Continual Training**: 3 hours.

### Training Arguments

We utilize [torchtune](https://github.com/pytorch/torchtune) library for the latest FSDP2 training code implementation. 

| **Parameter** | **Continual Training** |
| --- | --- |
| **Epoch** | 1 |
| **Global batch size** | 256 |
| **Learning Rate** | 1.5e-5 |
| **Learning Scheduler** | LambdaLR with warmup |
| **Optimizer** | [AdamW Fused](https://pytorch.org/docs/stable/generated/torch.optim.AdamW.html) |
| **Warmup Steps** | 8 |
| **Weight Decay** | 0.005 |
| **Max length** | 4096 |
| **Precision** | bf16 |


## More detail

Paper: http://arxiv.org/abs/2410.15316


## Citation Information

**BibTeX:**

```
@article{Llama3-S: Sound Instruction Language Model 2024,
  title={Llama3-S},
  author={Homebrew Research},
  year=2024,
  month=August},
  url={https://huggingface.co./homebrewltd/llama3.1-s-2024-08-20}
```

## Acknowledgement

- **[WhisperSpeech](https://github.com/collabora/WhisperSpeech)**

- **[Meta-Llama-3.1-8B-Instruct ](https://huggingface.co./meta-llama/Meta-Llama-3.1-8B-Instruct)**