|
2023-10-17 00:02:15,413 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 00:02:15,414 Model: "SequenceTagger( |
|
(embeddings): TransformerWordEmbeddings( |
|
(model): BertModel( |
|
(embeddings): BertEmbeddings( |
|
(word_embeddings): Embedding(32001, 768) |
|
(position_embeddings): Embedding(512, 768) |
|
(token_type_embeddings): Embedding(2, 768) |
|
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
(encoder): BertEncoder( |
|
(layer): ModuleList( |
|
(0-11): 12 x BertLayer( |
|
(attention): BertAttention( |
|
(self): BertSelfAttention( |
|
(query): Linear(in_features=768, out_features=768, bias=True) |
|
(key): Linear(in_features=768, out_features=768, bias=True) |
|
(value): Linear(in_features=768, out_features=768, bias=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
(output): BertSelfOutput( |
|
(dense): Linear(in_features=768, out_features=768, bias=True) |
|
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
) |
|
(intermediate): BertIntermediate( |
|
(dense): Linear(in_features=768, out_features=3072, bias=True) |
|
(intermediate_act_fn): GELUActivation() |
|
) |
|
(output): BertOutput( |
|
(dense): Linear(in_features=3072, out_features=768, bias=True) |
|
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
) |
|
) |
|
) |
|
(pooler): BertPooler( |
|
(dense): Linear(in_features=768, out_features=768, bias=True) |
|
(activation): Tanh() |
|
) |
|
) |
|
) |
|
(locked_dropout): LockedDropout(p=0.5) |
|
(linear): Linear(in_features=768, out_features=13, bias=True) |
|
(loss_function): CrossEntropyLoss() |
|
)" |
|
2023-10-17 00:02:15,414 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 00:02:15,414 MultiCorpus: 6183 train + 680 dev + 2113 test sentences |
|
- NER_HIPE_2022 Corpus: 6183 train + 680 dev + 2113 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/topres19th/en/with_doc_seperator |
|
2023-10-17 00:02:15,414 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 00:02:15,414 Train: 6183 sentences |
|
2023-10-17 00:02:15,414 (train_with_dev=False, train_with_test=False) |
|
2023-10-17 00:02:15,414 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 00:02:15,415 Training Params: |
|
2023-10-17 00:02:15,415 - learning_rate: "3e-05" |
|
2023-10-17 00:02:15,415 - mini_batch_size: "8" |
|
2023-10-17 00:02:15,415 - max_epochs: "10" |
|
2023-10-17 00:02:15,415 - shuffle: "True" |
|
2023-10-17 00:02:15,415 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 00:02:15,415 Plugins: |
|
2023-10-17 00:02:15,415 - LinearScheduler | warmup_fraction: '0.1' |
|
2023-10-17 00:02:15,415 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 00:02:15,415 Final evaluation on model from best epoch (best-model.pt) |
|
2023-10-17 00:02:15,415 - metric: "('micro avg', 'f1-score')" |
|
2023-10-17 00:02:15,415 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 00:02:15,415 Computation: |
|
2023-10-17 00:02:15,415 - compute on device: cuda:0 |
|
2023-10-17 00:02:15,415 - embedding storage: none |
|
2023-10-17 00:02:15,415 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 00:02:15,415 Model training base path: "hmbench-topres19th/en-dbmdz/bert-base-historic-multilingual-cased-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5" |
|
2023-10-17 00:02:15,415 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 00:02:15,415 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 00:02:19,821 epoch 1 - iter 77/773 - loss 2.32537798 - time (sec): 4.40 - samples/sec: 2923.31 - lr: 0.000003 - momentum: 0.000000 |
|
2023-10-17 00:02:24,181 epoch 1 - iter 154/773 - loss 1.39644595 - time (sec): 8.76 - samples/sec: 2910.79 - lr: 0.000006 - momentum: 0.000000 |
|
2023-10-17 00:02:28,671 epoch 1 - iter 231/773 - loss 1.01126391 - time (sec): 13.25 - samples/sec: 2847.50 - lr: 0.000009 - momentum: 0.000000 |
|
2023-10-17 00:02:33,108 epoch 1 - iter 308/773 - loss 0.80543336 - time (sec): 17.69 - samples/sec: 2821.83 - lr: 0.000012 - momentum: 0.000000 |
|
2023-10-17 00:02:37,725 epoch 1 - iter 385/773 - loss 0.66957136 - time (sec): 22.31 - samples/sec: 2803.17 - lr: 0.000015 - momentum: 0.000000 |
|
2023-10-17 00:02:42,147 epoch 1 - iter 462/773 - loss 0.58326545 - time (sec): 26.73 - samples/sec: 2778.15 - lr: 0.000018 - momentum: 0.000000 |
|
2023-10-17 00:02:46,740 epoch 1 - iter 539/773 - loss 0.51629996 - time (sec): 31.32 - samples/sec: 2754.64 - lr: 0.000021 - momentum: 0.000000 |
|
2023-10-17 00:02:51,150 epoch 1 - iter 616/773 - loss 0.46530910 - time (sec): 35.73 - samples/sec: 2756.33 - lr: 0.000024 - momentum: 0.000000 |
|
2023-10-17 00:02:55,889 epoch 1 - iter 693/773 - loss 0.42285036 - time (sec): 40.47 - samples/sec: 2748.13 - lr: 0.000027 - momentum: 0.000000 |
|
2023-10-17 00:03:00,302 epoch 1 - iter 770/773 - loss 0.38822438 - time (sec): 44.89 - samples/sec: 2760.80 - lr: 0.000030 - momentum: 0.000000 |
|
2023-10-17 00:03:00,451 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 00:03:00,451 EPOCH 1 done: loss 0.3872 - lr: 0.000030 |
|
2023-10-17 00:03:02,192 DEV : loss 0.05650660768151283 - f1-score (micro avg) 0.6938 |
|
2023-10-17 00:03:02,205 saving best model |
|
2023-10-17 00:03:02,539 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 00:03:07,258 epoch 2 - iter 77/773 - loss 0.08489853 - time (sec): 4.72 - samples/sec: 2802.48 - lr: 0.000030 - momentum: 0.000000 |
|
2023-10-17 00:03:11,873 epoch 2 - iter 154/773 - loss 0.08347053 - time (sec): 9.33 - samples/sec: 2766.52 - lr: 0.000029 - momentum: 0.000000 |
|
2023-10-17 00:03:16,356 epoch 2 - iter 231/773 - loss 0.08160898 - time (sec): 13.82 - samples/sec: 2757.91 - lr: 0.000029 - momentum: 0.000000 |
|
2023-10-17 00:03:20,717 epoch 2 - iter 308/773 - loss 0.08349640 - time (sec): 18.18 - samples/sec: 2752.10 - lr: 0.000029 - momentum: 0.000000 |
|
2023-10-17 00:03:25,154 epoch 2 - iter 385/773 - loss 0.08202306 - time (sec): 22.61 - samples/sec: 2720.25 - lr: 0.000028 - momentum: 0.000000 |
|
2023-10-17 00:03:29,566 epoch 2 - iter 462/773 - loss 0.08138239 - time (sec): 27.03 - samples/sec: 2739.59 - lr: 0.000028 - momentum: 0.000000 |
|
2023-10-17 00:03:34,029 epoch 2 - iter 539/773 - loss 0.08140479 - time (sec): 31.49 - samples/sec: 2754.29 - lr: 0.000028 - momentum: 0.000000 |
|
2023-10-17 00:03:38,872 epoch 2 - iter 616/773 - loss 0.07747793 - time (sec): 36.33 - samples/sec: 2743.79 - lr: 0.000027 - momentum: 0.000000 |
|
2023-10-17 00:03:43,274 epoch 2 - iter 693/773 - loss 0.07718394 - time (sec): 40.73 - samples/sec: 2736.23 - lr: 0.000027 - momentum: 0.000000 |
|
2023-10-17 00:03:47,771 epoch 2 - iter 770/773 - loss 0.07694589 - time (sec): 45.23 - samples/sec: 2741.04 - lr: 0.000027 - momentum: 0.000000 |
|
2023-10-17 00:03:47,914 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 00:03:47,915 EPOCH 2 done: loss 0.0769 - lr: 0.000027 |
|
2023-10-17 00:03:50,333 DEV : loss 0.0547206737101078 - f1-score (micro avg) 0.7759 |
|
2023-10-17 00:03:50,346 saving best model |
|
2023-10-17 00:03:50,814 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 00:03:55,393 epoch 3 - iter 77/773 - loss 0.04187396 - time (sec): 4.58 - samples/sec: 2791.16 - lr: 0.000026 - momentum: 0.000000 |
|
2023-10-17 00:04:00,079 epoch 3 - iter 154/773 - loss 0.05682215 - time (sec): 9.26 - samples/sec: 2789.17 - lr: 0.000026 - momentum: 0.000000 |
|
2023-10-17 00:04:04,789 epoch 3 - iter 231/773 - loss 0.05388452 - time (sec): 13.97 - samples/sec: 2803.36 - lr: 0.000026 - momentum: 0.000000 |
|
2023-10-17 00:04:09,173 epoch 3 - iter 308/773 - loss 0.05046208 - time (sec): 18.36 - samples/sec: 2767.82 - lr: 0.000025 - momentum: 0.000000 |
|
2023-10-17 00:04:13,610 epoch 3 - iter 385/773 - loss 0.04968648 - time (sec): 22.79 - samples/sec: 2757.33 - lr: 0.000025 - momentum: 0.000000 |
|
2023-10-17 00:04:18,042 epoch 3 - iter 462/773 - loss 0.04971432 - time (sec): 27.23 - samples/sec: 2743.24 - lr: 0.000025 - momentum: 0.000000 |
|
2023-10-17 00:04:22,720 epoch 3 - iter 539/773 - loss 0.04992038 - time (sec): 31.90 - samples/sec: 2749.36 - lr: 0.000024 - momentum: 0.000000 |
|
2023-10-17 00:04:27,265 epoch 3 - iter 616/773 - loss 0.04910921 - time (sec): 36.45 - samples/sec: 2740.05 - lr: 0.000024 - momentum: 0.000000 |
|
2023-10-17 00:04:31,575 epoch 3 - iter 693/773 - loss 0.04872624 - time (sec): 40.76 - samples/sec: 2733.99 - lr: 0.000024 - momentum: 0.000000 |
|
2023-10-17 00:04:36,034 epoch 3 - iter 770/773 - loss 0.04859388 - time (sec): 45.22 - samples/sec: 2739.46 - lr: 0.000023 - momentum: 0.000000 |
|
2023-10-17 00:04:36,180 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 00:04:36,181 EPOCH 3 done: loss 0.0485 - lr: 0.000023 |
|
2023-10-17 00:04:38,322 DEV : loss 0.06617607176303864 - f1-score (micro avg) 0.7778 |
|
2023-10-17 00:04:38,335 saving best model |
|
2023-10-17 00:04:38,793 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 00:04:43,088 epoch 4 - iter 77/773 - loss 0.03283229 - time (sec): 4.29 - samples/sec: 2716.07 - lr: 0.000023 - momentum: 0.000000 |
|
2023-10-17 00:04:47,633 epoch 4 - iter 154/773 - loss 0.02889967 - time (sec): 8.83 - samples/sec: 2678.88 - lr: 0.000023 - momentum: 0.000000 |
|
2023-10-17 00:04:52,242 epoch 4 - iter 231/773 - loss 0.03012282 - time (sec): 13.44 - samples/sec: 2702.53 - lr: 0.000022 - momentum: 0.000000 |
|
2023-10-17 00:04:56,714 epoch 4 - iter 308/773 - loss 0.02887586 - time (sec): 17.92 - samples/sec: 2711.46 - lr: 0.000022 - momentum: 0.000000 |
|
2023-10-17 00:05:01,312 epoch 4 - iter 385/773 - loss 0.03075624 - time (sec): 22.51 - samples/sec: 2701.08 - lr: 0.000022 - momentum: 0.000000 |
|
2023-10-17 00:05:05,714 epoch 4 - iter 462/773 - loss 0.03144270 - time (sec): 26.92 - samples/sec: 2704.90 - lr: 0.000021 - momentum: 0.000000 |
|
2023-10-17 00:05:10,256 epoch 4 - iter 539/773 - loss 0.03187058 - time (sec): 31.46 - samples/sec: 2716.26 - lr: 0.000021 - momentum: 0.000000 |
|
2023-10-17 00:05:14,768 epoch 4 - iter 616/773 - loss 0.03220682 - time (sec): 35.97 - samples/sec: 2715.62 - lr: 0.000021 - momentum: 0.000000 |
|
2023-10-17 00:05:19,176 epoch 4 - iter 693/773 - loss 0.03218910 - time (sec): 40.38 - samples/sec: 2735.10 - lr: 0.000020 - momentum: 0.000000 |
|
2023-10-17 00:05:23,884 epoch 4 - iter 770/773 - loss 0.03176330 - time (sec): 45.09 - samples/sec: 2743.13 - lr: 0.000020 - momentum: 0.000000 |
|
2023-10-17 00:05:24,069 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 00:05:24,069 EPOCH 4 done: loss 0.0318 - lr: 0.000020 |
|
2023-10-17 00:05:26,248 DEV : loss 0.08043687045574188 - f1-score (micro avg) 0.8008 |
|
2023-10-17 00:05:26,261 saving best model |
|
2023-10-17 00:05:26,692 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 00:05:31,172 epoch 5 - iter 77/773 - loss 0.02544472 - time (sec): 4.48 - samples/sec: 2766.54 - lr: 0.000020 - momentum: 0.000000 |
|
2023-10-17 00:05:35,661 epoch 5 - iter 154/773 - loss 0.02257079 - time (sec): 8.97 - samples/sec: 2720.45 - lr: 0.000019 - momentum: 0.000000 |
|
2023-10-17 00:05:40,059 epoch 5 - iter 231/773 - loss 0.02161194 - time (sec): 13.36 - samples/sec: 2755.55 - lr: 0.000019 - momentum: 0.000000 |
|
2023-10-17 00:05:44,332 epoch 5 - iter 308/773 - loss 0.02181905 - time (sec): 17.64 - samples/sec: 2788.07 - lr: 0.000019 - momentum: 0.000000 |
|
2023-10-17 00:05:49,054 epoch 5 - iter 385/773 - loss 0.02217563 - time (sec): 22.36 - samples/sec: 2775.13 - lr: 0.000018 - momentum: 0.000000 |
|
2023-10-17 00:05:53,652 epoch 5 - iter 462/773 - loss 0.02354034 - time (sec): 26.96 - samples/sec: 2746.15 - lr: 0.000018 - momentum: 0.000000 |
|
2023-10-17 00:05:58,250 epoch 5 - iter 539/773 - loss 0.02344632 - time (sec): 31.55 - samples/sec: 2774.95 - lr: 0.000018 - momentum: 0.000000 |
|
2023-10-17 00:06:02,708 epoch 5 - iter 616/773 - loss 0.02222092 - time (sec): 36.01 - samples/sec: 2760.67 - lr: 0.000017 - momentum: 0.000000 |
|
2023-10-17 00:06:07,215 epoch 5 - iter 693/773 - loss 0.02187424 - time (sec): 40.52 - samples/sec: 2757.91 - lr: 0.000017 - momentum: 0.000000 |
|
2023-10-17 00:06:11,843 epoch 5 - iter 770/773 - loss 0.02196420 - time (sec): 45.15 - samples/sec: 2746.18 - lr: 0.000017 - momentum: 0.000000 |
|
2023-10-17 00:06:11,993 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 00:06:11,994 EPOCH 5 done: loss 0.0219 - lr: 0.000017 |
|
2023-10-17 00:06:14,045 DEV : loss 0.09281734377145767 - f1-score (micro avg) 0.7984 |
|
2023-10-17 00:06:14,058 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 00:06:18,476 epoch 6 - iter 77/773 - loss 0.01754628 - time (sec): 4.42 - samples/sec: 2851.07 - lr: 0.000016 - momentum: 0.000000 |
|
2023-10-17 00:06:23,103 epoch 6 - iter 154/773 - loss 0.01478913 - time (sec): 9.04 - samples/sec: 2805.88 - lr: 0.000016 - momentum: 0.000000 |
|
2023-10-17 00:06:27,628 epoch 6 - iter 231/773 - loss 0.01586836 - time (sec): 13.57 - samples/sec: 2737.88 - lr: 0.000016 - momentum: 0.000000 |
|
2023-10-17 00:06:32,019 epoch 6 - iter 308/773 - loss 0.01810026 - time (sec): 17.96 - samples/sec: 2764.63 - lr: 0.000015 - momentum: 0.000000 |
|
2023-10-17 00:06:36,634 epoch 6 - iter 385/773 - loss 0.01805116 - time (sec): 22.58 - samples/sec: 2764.74 - lr: 0.000015 - momentum: 0.000000 |
|
2023-10-17 00:06:41,164 epoch 6 - iter 462/773 - loss 0.01877742 - time (sec): 27.10 - samples/sec: 2739.87 - lr: 0.000015 - momentum: 0.000000 |
|
2023-10-17 00:06:45,844 epoch 6 - iter 539/773 - loss 0.01719607 - time (sec): 31.79 - samples/sec: 2734.19 - lr: 0.000014 - momentum: 0.000000 |
|
2023-10-17 00:06:50,351 epoch 6 - iter 616/773 - loss 0.01753376 - time (sec): 36.29 - samples/sec: 2692.58 - lr: 0.000014 - momentum: 0.000000 |
|
2023-10-17 00:06:55,337 epoch 6 - iter 693/773 - loss 0.01746324 - time (sec): 41.28 - samples/sec: 2680.67 - lr: 0.000014 - momentum: 0.000000 |
|
2023-10-17 00:06:59,848 epoch 6 - iter 770/773 - loss 0.01698989 - time (sec): 45.79 - samples/sec: 2707.29 - lr: 0.000013 - momentum: 0.000000 |
|
2023-10-17 00:07:00,006 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 00:07:00,006 EPOCH 6 done: loss 0.0171 - lr: 0.000013 |
|
2023-10-17 00:07:02,032 DEV : loss 0.0988919660449028 - f1-score (micro avg) 0.7862 |
|
2023-10-17 00:07:02,046 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 00:07:06,337 epoch 7 - iter 77/773 - loss 0.01237299 - time (sec): 4.29 - samples/sec: 2694.78 - lr: 0.000013 - momentum: 0.000000 |
|
2023-10-17 00:07:10,716 epoch 7 - iter 154/773 - loss 0.01304177 - time (sec): 8.67 - samples/sec: 2680.44 - lr: 0.000013 - momentum: 0.000000 |
|
2023-10-17 00:07:15,149 epoch 7 - iter 231/773 - loss 0.01266367 - time (sec): 13.10 - samples/sec: 2681.15 - lr: 0.000012 - momentum: 0.000000 |
|
2023-10-17 00:07:19,827 epoch 7 - iter 308/773 - loss 0.01099661 - time (sec): 17.78 - samples/sec: 2701.77 - lr: 0.000012 - momentum: 0.000000 |
|
2023-10-17 00:07:24,501 epoch 7 - iter 385/773 - loss 0.01065385 - time (sec): 22.45 - samples/sec: 2710.31 - lr: 0.000012 - momentum: 0.000000 |
|
2023-10-17 00:07:29,332 epoch 7 - iter 462/773 - loss 0.01100561 - time (sec): 27.29 - samples/sec: 2701.80 - lr: 0.000011 - momentum: 0.000000 |
|
2023-10-17 00:07:33,792 epoch 7 - iter 539/773 - loss 0.01140856 - time (sec): 31.74 - samples/sec: 2737.64 - lr: 0.000011 - momentum: 0.000000 |
|
2023-10-17 00:07:38,159 epoch 7 - iter 616/773 - loss 0.01149250 - time (sec): 36.11 - samples/sec: 2752.33 - lr: 0.000011 - momentum: 0.000000 |
|
2023-10-17 00:07:42,551 epoch 7 - iter 693/773 - loss 0.01180606 - time (sec): 40.50 - samples/sec: 2746.82 - lr: 0.000010 - momentum: 0.000000 |
|
2023-10-17 00:07:47,066 epoch 7 - iter 770/773 - loss 0.01156637 - time (sec): 45.02 - samples/sec: 2751.41 - lr: 0.000010 - momentum: 0.000000 |
|
2023-10-17 00:07:47,241 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 00:07:47,241 EPOCH 7 done: loss 0.0115 - lr: 0.000010 |
|
2023-10-17 00:07:49,330 DEV : loss 0.10134067386388779 - f1-score (micro avg) 0.8057 |
|
2023-10-17 00:07:49,343 saving best model |
|
2023-10-17 00:07:49,797 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 00:07:54,435 epoch 8 - iter 77/773 - loss 0.01014825 - time (sec): 4.64 - samples/sec: 2668.24 - lr: 0.000010 - momentum: 0.000000 |
|
2023-10-17 00:07:59,271 epoch 8 - iter 154/773 - loss 0.00874093 - time (sec): 9.47 - samples/sec: 2726.47 - lr: 0.000009 - momentum: 0.000000 |
|
2023-10-17 00:08:03,768 epoch 8 - iter 231/773 - loss 0.00992027 - time (sec): 13.97 - samples/sec: 2711.53 - lr: 0.000009 - momentum: 0.000000 |
|
2023-10-17 00:08:08,281 epoch 8 - iter 308/773 - loss 0.00892334 - time (sec): 18.48 - samples/sec: 2743.99 - lr: 0.000009 - momentum: 0.000000 |
|
2023-10-17 00:08:12,957 epoch 8 - iter 385/773 - loss 0.00881416 - time (sec): 23.16 - samples/sec: 2741.93 - lr: 0.000008 - momentum: 0.000000 |
|
2023-10-17 00:08:17,660 epoch 8 - iter 462/773 - loss 0.00832352 - time (sec): 27.86 - samples/sec: 2744.83 - lr: 0.000008 - momentum: 0.000000 |
|
2023-10-17 00:08:22,079 epoch 8 - iter 539/773 - loss 0.00829162 - time (sec): 32.28 - samples/sec: 2727.50 - lr: 0.000008 - momentum: 0.000000 |
|
2023-10-17 00:08:26,396 epoch 8 - iter 616/773 - loss 0.00850288 - time (sec): 36.60 - samples/sec: 2717.51 - lr: 0.000007 - momentum: 0.000000 |
|
2023-10-17 00:08:30,865 epoch 8 - iter 693/773 - loss 0.00806884 - time (sec): 41.07 - samples/sec: 2731.36 - lr: 0.000007 - momentum: 0.000000 |
|
2023-10-17 00:08:35,232 epoch 8 - iter 770/773 - loss 0.00809371 - time (sec): 45.43 - samples/sec: 2726.00 - lr: 0.000007 - momentum: 0.000000 |
|
2023-10-17 00:08:35,396 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 00:08:35,397 EPOCH 8 done: loss 0.0081 - lr: 0.000007 |
|
2023-10-17 00:08:37,446 DEV : loss 0.10502836853265762 - f1-score (micro avg) 0.8122 |
|
2023-10-17 00:08:37,459 saving best model |
|
2023-10-17 00:08:37,910 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 00:08:42,371 epoch 9 - iter 77/773 - loss 0.01014486 - time (sec): 4.46 - samples/sec: 2743.83 - lr: 0.000006 - momentum: 0.000000 |
|
2023-10-17 00:08:46,899 epoch 9 - iter 154/773 - loss 0.00742422 - time (sec): 8.99 - samples/sec: 2812.20 - lr: 0.000006 - momentum: 0.000000 |
|
2023-10-17 00:08:51,665 epoch 9 - iter 231/773 - loss 0.00589126 - time (sec): 13.75 - samples/sec: 2791.71 - lr: 0.000006 - momentum: 0.000000 |
|
2023-10-17 00:08:56,063 epoch 9 - iter 308/773 - loss 0.00726357 - time (sec): 18.15 - samples/sec: 2778.16 - lr: 0.000005 - momentum: 0.000000 |
|
2023-10-17 00:09:00,644 epoch 9 - iter 385/773 - loss 0.00604410 - time (sec): 22.73 - samples/sec: 2758.51 - lr: 0.000005 - momentum: 0.000000 |
|
2023-10-17 00:09:05,214 epoch 9 - iter 462/773 - loss 0.00579631 - time (sec): 27.30 - samples/sec: 2744.61 - lr: 0.000005 - momentum: 0.000000 |
|
2023-10-17 00:09:09,519 epoch 9 - iter 539/773 - loss 0.00544690 - time (sec): 31.61 - samples/sec: 2733.80 - lr: 0.000004 - momentum: 0.000000 |
|
2023-10-17 00:09:13,933 epoch 9 - iter 616/773 - loss 0.00539373 - time (sec): 36.02 - samples/sec: 2753.50 - lr: 0.000004 - momentum: 0.000000 |
|
2023-10-17 00:09:18,546 epoch 9 - iter 693/773 - loss 0.00528883 - time (sec): 40.63 - samples/sec: 2748.24 - lr: 0.000004 - momentum: 0.000000 |
|
2023-10-17 00:09:22,935 epoch 9 - iter 770/773 - loss 0.00566848 - time (sec): 45.02 - samples/sec: 2748.09 - lr: 0.000003 - momentum: 0.000000 |
|
2023-10-17 00:09:23,109 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 00:09:23,109 EPOCH 9 done: loss 0.0056 - lr: 0.000003 |
|
2023-10-17 00:09:25,144 DEV : loss 0.11343234777450562 - f1-score (micro avg) 0.7934 |
|
2023-10-17 00:09:25,157 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 00:09:29,896 epoch 10 - iter 77/773 - loss 0.00231576 - time (sec): 4.74 - samples/sec: 2654.62 - lr: 0.000003 - momentum: 0.000000 |
|
2023-10-17 00:09:34,465 epoch 10 - iter 154/773 - loss 0.00249641 - time (sec): 9.31 - samples/sec: 2684.47 - lr: 0.000003 - momentum: 0.000000 |
|
2023-10-17 00:09:38,825 epoch 10 - iter 231/773 - loss 0.00374059 - time (sec): 13.67 - samples/sec: 2660.85 - lr: 0.000002 - momentum: 0.000000 |
|
2023-10-17 00:09:43,507 epoch 10 - iter 308/773 - loss 0.00401961 - time (sec): 18.35 - samples/sec: 2682.09 - lr: 0.000002 - momentum: 0.000000 |
|
2023-10-17 00:09:48,107 epoch 10 - iter 385/773 - loss 0.00388607 - time (sec): 22.95 - samples/sec: 2728.17 - lr: 0.000002 - momentum: 0.000000 |
|
2023-10-17 00:09:52,698 epoch 10 - iter 462/773 - loss 0.00364499 - time (sec): 27.54 - samples/sec: 2749.47 - lr: 0.000001 - momentum: 0.000000 |
|
2023-10-17 00:09:57,479 epoch 10 - iter 539/773 - loss 0.00343129 - time (sec): 32.32 - samples/sec: 2723.02 - lr: 0.000001 - momentum: 0.000000 |
|
2023-10-17 00:10:01,847 epoch 10 - iter 616/773 - loss 0.00340294 - time (sec): 36.69 - samples/sec: 2714.54 - lr: 0.000001 - momentum: 0.000000 |
|
2023-10-17 00:10:06,269 epoch 10 - iter 693/773 - loss 0.00353649 - time (sec): 41.11 - samples/sec: 2721.73 - lr: 0.000000 - momentum: 0.000000 |
|
2023-10-17 00:10:10,747 epoch 10 - iter 770/773 - loss 0.00363040 - time (sec): 45.59 - samples/sec: 2716.64 - lr: 0.000000 - momentum: 0.000000 |
|
2023-10-17 00:10:10,902 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 00:10:10,903 EPOCH 10 done: loss 0.0036 - lr: 0.000000 |
|
2023-10-17 00:10:12,932 DEV : loss 0.1106431633234024 - f1-score (micro avg) 0.7926 |
|
2023-10-17 00:10:13,311 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 00:10:13,312 Loading model from best epoch ... |
|
2023-10-17 00:10:14,890 SequenceTagger predicts: Dictionary with 13 tags: O, S-LOC, B-LOC, E-LOC, I-LOC, S-BUILDING, B-BUILDING, E-BUILDING, I-BUILDING, S-STREET, B-STREET, E-STREET, I-STREET |
|
2023-10-17 00:10:21,007 |
|
Results: |
|
- F-score (micro) 0.7928 |
|
- F-score (macro) 0.6941 |
|
- Accuracy 0.6803 |
|
|
|
By class: |
|
precision recall f1-score support |
|
|
|
LOC 0.8269 0.8584 0.8423 946 |
|
BUILDING 0.5848 0.5405 0.5618 185 |
|
STREET 0.6610 0.6964 0.6783 56 |
|
|
|
micro avg 0.7847 0.8012 0.7928 1187 |
|
macro avg 0.6909 0.6984 0.6941 1187 |
|
weighted avg 0.7813 0.8012 0.7909 1187 |
|
|
|
2023-10-17 00:10:21,007 ---------------------------------------------------------------------------------------------------- |
|
|