stefan-it's picture
Upload folder using huggingface_hub
12099be
2023-10-20 09:10:53,344 ----------------------------------------------------------------------------------------------------
2023-10-20 09:10:53,345 Model: "SequenceTagger(
(embeddings): TransformerWordEmbeddings(
(model): BertModel(
(embeddings): BertEmbeddings(
(word_embeddings): Embedding(32001, 128)
(position_embeddings): Embedding(512, 128)
(token_type_embeddings): Embedding(2, 128)
(LayerNorm): LayerNorm((128,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(encoder): BertEncoder(
(layer): ModuleList(
(0-1): 2 x BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=128, out_features=128, bias=True)
(key): Linear(in_features=128, out_features=128, bias=True)
(value): Linear(in_features=128, out_features=128, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=128, out_features=128, bias=True)
(LayerNorm): LayerNorm((128,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=128, out_features=512, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=512, out_features=128, bias=True)
(LayerNorm): LayerNorm((128,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
)
)
(pooler): BertPooler(
(dense): Linear(in_features=128, out_features=128, bias=True)
(activation): Tanh()
)
)
)
(locked_dropout): LockedDropout(p=0.5)
(linear): Linear(in_features=128, out_features=13, bias=True)
(loss_function): CrossEntropyLoss()
)"
2023-10-20 09:10:53,345 ----------------------------------------------------------------------------------------------------
2023-10-20 09:10:53,345 MultiCorpus: 6183 train + 680 dev + 2113 test sentences
- NER_HIPE_2022 Corpus: 6183 train + 680 dev + 2113 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/topres19th/en/with_doc_seperator
2023-10-20 09:10:53,345 ----------------------------------------------------------------------------------------------------
2023-10-20 09:10:53,345 Train: 6183 sentences
2023-10-20 09:10:53,345 (train_with_dev=False, train_with_test=False)
2023-10-20 09:10:53,345 ----------------------------------------------------------------------------------------------------
2023-10-20 09:10:53,345 Training Params:
2023-10-20 09:10:53,345 - learning_rate: "5e-05"
2023-10-20 09:10:53,345 - mini_batch_size: "4"
2023-10-20 09:10:53,345 - max_epochs: "10"
2023-10-20 09:10:53,345 - shuffle: "True"
2023-10-20 09:10:53,345 ----------------------------------------------------------------------------------------------------
2023-10-20 09:10:53,345 Plugins:
2023-10-20 09:10:53,345 - TensorboardLogger
2023-10-20 09:10:53,345 - LinearScheduler | warmup_fraction: '0.1'
2023-10-20 09:10:53,345 ----------------------------------------------------------------------------------------------------
2023-10-20 09:10:53,345 Final evaluation on model from best epoch (best-model.pt)
2023-10-20 09:10:53,345 - metric: "('micro avg', 'f1-score')"
2023-10-20 09:10:53,345 ----------------------------------------------------------------------------------------------------
2023-10-20 09:10:53,345 Computation:
2023-10-20 09:10:53,346 - compute on device: cuda:0
2023-10-20 09:10:53,346 - embedding storage: none
2023-10-20 09:10:53,346 ----------------------------------------------------------------------------------------------------
2023-10-20 09:10:53,346 Model training base path: "hmbench-topres19th/en-dbmdz/bert-tiny-historic-multilingual-cased-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1"
2023-10-20 09:10:53,346 ----------------------------------------------------------------------------------------------------
2023-10-20 09:10:53,346 ----------------------------------------------------------------------------------------------------
2023-10-20 09:10:53,346 Logging anything other than scalars to TensorBoard is currently not supported.
2023-10-20 09:10:55,493 epoch 1 - iter 154/1546 - loss 3.21325929 - time (sec): 2.15 - samples/sec: 5915.84 - lr: 0.000005 - momentum: 0.000000
2023-10-20 09:10:57,852 epoch 1 - iter 308/1546 - loss 2.73136394 - time (sec): 4.51 - samples/sec: 5409.73 - lr: 0.000010 - momentum: 0.000000
2023-10-20 09:11:00,247 epoch 1 - iter 462/1546 - loss 2.10367644 - time (sec): 6.90 - samples/sec: 5296.07 - lr: 0.000015 - momentum: 0.000000
2023-10-20 09:11:02,599 epoch 1 - iter 616/1546 - loss 1.64790228 - time (sec): 9.25 - samples/sec: 5332.98 - lr: 0.000020 - momentum: 0.000000
2023-10-20 09:11:04,927 epoch 1 - iter 770/1546 - loss 1.36724939 - time (sec): 11.58 - samples/sec: 5307.28 - lr: 0.000025 - momentum: 0.000000
2023-10-20 09:11:07,272 epoch 1 - iter 924/1546 - loss 1.19033908 - time (sec): 13.93 - samples/sec: 5247.46 - lr: 0.000030 - momentum: 0.000000
2023-10-20 09:11:09,645 epoch 1 - iter 1078/1546 - loss 1.05213539 - time (sec): 16.30 - samples/sec: 5262.07 - lr: 0.000035 - momentum: 0.000000
2023-10-20 09:11:12,045 epoch 1 - iter 1232/1546 - loss 0.94506634 - time (sec): 18.70 - samples/sec: 5282.40 - lr: 0.000040 - momentum: 0.000000
2023-10-20 09:11:14,435 epoch 1 - iter 1386/1546 - loss 0.86827104 - time (sec): 21.09 - samples/sec: 5248.10 - lr: 0.000045 - momentum: 0.000000
2023-10-20 09:11:16,826 epoch 1 - iter 1540/1546 - loss 0.80053304 - time (sec): 23.48 - samples/sec: 5269.99 - lr: 0.000050 - momentum: 0.000000
2023-10-20 09:11:16,921 ----------------------------------------------------------------------------------------------------
2023-10-20 09:11:16,921 EPOCH 1 done: loss 0.7972 - lr: 0.000050
2023-10-20 09:11:17,909 DEV : loss 0.12200508266687393 - f1-score (micro avg) 0.0
2023-10-20 09:11:17,920 ----------------------------------------------------------------------------------------------------
2023-10-20 09:11:20,258 epoch 2 - iter 154/1546 - loss 0.20037114 - time (sec): 2.34 - samples/sec: 5316.00 - lr: 0.000049 - momentum: 0.000000
2023-10-20 09:11:22,588 epoch 2 - iter 308/1546 - loss 0.19373175 - time (sec): 4.67 - samples/sec: 5136.35 - lr: 0.000049 - momentum: 0.000000
2023-10-20 09:11:24,881 epoch 2 - iter 462/1546 - loss 0.19375140 - time (sec): 6.96 - samples/sec: 5094.82 - lr: 0.000048 - momentum: 0.000000
2023-10-20 09:11:27,027 epoch 2 - iter 616/1546 - loss 0.18263563 - time (sec): 9.11 - samples/sec: 5310.30 - lr: 0.000048 - momentum: 0.000000
2023-10-20 09:11:29,497 epoch 2 - iter 770/1546 - loss 0.18103908 - time (sec): 11.58 - samples/sec: 5284.82 - lr: 0.000047 - momentum: 0.000000
2023-10-20 09:11:31,857 epoch 2 - iter 924/1546 - loss 0.17969558 - time (sec): 13.94 - samples/sec: 5231.40 - lr: 0.000047 - momentum: 0.000000
2023-10-20 09:11:34,265 epoch 2 - iter 1078/1546 - loss 0.18008258 - time (sec): 16.34 - samples/sec: 5191.02 - lr: 0.000046 - momentum: 0.000000
2023-10-20 09:11:36,727 epoch 2 - iter 1232/1546 - loss 0.17929640 - time (sec): 18.81 - samples/sec: 5185.00 - lr: 0.000046 - momentum: 0.000000
2023-10-20 09:11:39,118 epoch 2 - iter 1386/1546 - loss 0.17901491 - time (sec): 21.20 - samples/sec: 5181.36 - lr: 0.000045 - momentum: 0.000000
2023-10-20 09:11:41,576 epoch 2 - iter 1540/1546 - loss 0.17615955 - time (sec): 23.66 - samples/sec: 5224.96 - lr: 0.000044 - momentum: 0.000000
2023-10-20 09:11:41,695 ----------------------------------------------------------------------------------------------------
2023-10-20 09:11:41,696 EPOCH 2 done: loss 0.1756 - lr: 0.000044
2023-10-20 09:11:42,775 DEV : loss 0.0903642475605011 - f1-score (micro avg) 0.5253
2023-10-20 09:11:42,786 saving best model
2023-10-20 09:11:42,817 ----------------------------------------------------------------------------------------------------
2023-10-20 09:11:45,188 epoch 3 - iter 154/1546 - loss 0.14713794 - time (sec): 2.37 - samples/sec: 4827.32 - lr: 0.000044 - momentum: 0.000000
2023-10-20 09:11:47,561 epoch 3 - iter 308/1546 - loss 0.13527283 - time (sec): 4.74 - samples/sec: 5079.03 - lr: 0.000043 - momentum: 0.000000
2023-10-20 09:11:49,960 epoch 3 - iter 462/1546 - loss 0.13016097 - time (sec): 7.14 - samples/sec: 5104.38 - lr: 0.000043 - momentum: 0.000000
2023-10-20 09:11:52,338 epoch 3 - iter 616/1546 - loss 0.14160502 - time (sec): 9.52 - samples/sec: 5192.01 - lr: 0.000042 - momentum: 0.000000
2023-10-20 09:11:54,684 epoch 3 - iter 770/1546 - loss 0.14258890 - time (sec): 11.87 - samples/sec: 5170.42 - lr: 0.000042 - momentum: 0.000000
2023-10-20 09:11:57,136 epoch 3 - iter 924/1546 - loss 0.14415601 - time (sec): 14.32 - samples/sec: 5230.21 - lr: 0.000041 - momentum: 0.000000
2023-10-20 09:11:59,513 epoch 3 - iter 1078/1546 - loss 0.14532688 - time (sec): 16.69 - samples/sec: 5234.95 - lr: 0.000041 - momentum: 0.000000
2023-10-20 09:12:01,862 epoch 3 - iter 1232/1546 - loss 0.14491438 - time (sec): 19.04 - samples/sec: 5249.51 - lr: 0.000040 - momentum: 0.000000
2023-10-20 09:12:04,229 epoch 3 - iter 1386/1546 - loss 0.14477599 - time (sec): 21.41 - samples/sec: 5190.93 - lr: 0.000039 - momentum: 0.000000
2023-10-20 09:12:06,637 epoch 3 - iter 1540/1546 - loss 0.14405777 - time (sec): 23.82 - samples/sec: 5192.53 - lr: 0.000039 - momentum: 0.000000
2023-10-20 09:12:06,735 ----------------------------------------------------------------------------------------------------
2023-10-20 09:12:06,735 EPOCH 3 done: loss 0.1439 - lr: 0.000039
2023-10-20 09:12:07,826 DEV : loss 0.08732243627309799 - f1-score (micro avg) 0.582
2023-10-20 09:12:07,838 saving best model
2023-10-20 09:12:07,879 ----------------------------------------------------------------------------------------------------
2023-10-20 09:12:10,199 epoch 4 - iter 154/1546 - loss 0.13584888 - time (sec): 2.32 - samples/sec: 5435.78 - lr: 0.000038 - momentum: 0.000000
2023-10-20 09:12:12,467 epoch 4 - iter 308/1546 - loss 0.12847974 - time (sec): 4.59 - samples/sec: 5415.61 - lr: 0.000038 - momentum: 0.000000
2023-10-20 09:12:14,783 epoch 4 - iter 462/1546 - loss 0.13330930 - time (sec): 6.90 - samples/sec: 5182.03 - lr: 0.000037 - momentum: 0.000000
2023-10-20 09:12:17,100 epoch 4 - iter 616/1546 - loss 0.13475968 - time (sec): 9.22 - samples/sec: 5255.10 - lr: 0.000037 - momentum: 0.000000
2023-10-20 09:12:19,561 epoch 4 - iter 770/1546 - loss 0.13542888 - time (sec): 11.68 - samples/sec: 5195.27 - lr: 0.000036 - momentum: 0.000000
2023-10-20 09:12:21,912 epoch 4 - iter 924/1546 - loss 0.13268362 - time (sec): 14.03 - samples/sec: 5195.45 - lr: 0.000036 - momentum: 0.000000
2023-10-20 09:12:24,358 epoch 4 - iter 1078/1546 - loss 0.12936714 - time (sec): 16.48 - samples/sec: 5228.09 - lr: 0.000035 - momentum: 0.000000
2023-10-20 09:12:26,745 epoch 4 - iter 1232/1546 - loss 0.12991586 - time (sec): 18.87 - samples/sec: 5254.54 - lr: 0.000034 - momentum: 0.000000
2023-10-20 09:12:29,152 epoch 4 - iter 1386/1546 - loss 0.13125019 - time (sec): 21.27 - samples/sec: 5226.79 - lr: 0.000034 - momentum: 0.000000
2023-10-20 09:12:31,639 epoch 4 - iter 1540/1546 - loss 0.13168722 - time (sec): 23.76 - samples/sec: 5212.55 - lr: 0.000033 - momentum: 0.000000
2023-10-20 09:12:31,729 ----------------------------------------------------------------------------------------------------
2023-10-20 09:12:31,729 EPOCH 4 done: loss 0.1315 - lr: 0.000033
2023-10-20 09:12:32,821 DEV : loss 0.08709011971950531 - f1-score (micro avg) 0.5958
2023-10-20 09:12:32,833 saving best model
2023-10-20 09:12:32,866 ----------------------------------------------------------------------------------------------------
2023-10-20 09:12:35,352 epoch 5 - iter 154/1546 - loss 0.11043084 - time (sec): 2.49 - samples/sec: 4962.99 - lr: 0.000033 - momentum: 0.000000
2023-10-20 09:12:37,696 epoch 5 - iter 308/1546 - loss 0.11299564 - time (sec): 4.83 - samples/sec: 4959.49 - lr: 0.000032 - momentum: 0.000000
2023-10-20 09:12:40,158 epoch 5 - iter 462/1546 - loss 0.11388012 - time (sec): 7.29 - samples/sec: 4934.01 - lr: 0.000032 - momentum: 0.000000
2023-10-20 09:12:42,525 epoch 5 - iter 616/1546 - loss 0.11338971 - time (sec): 9.66 - samples/sec: 5096.42 - lr: 0.000031 - momentum: 0.000000
2023-10-20 09:12:44,869 epoch 5 - iter 770/1546 - loss 0.11529993 - time (sec): 12.00 - samples/sec: 5183.06 - lr: 0.000031 - momentum: 0.000000
2023-10-20 09:12:47,199 epoch 5 - iter 924/1546 - loss 0.11409167 - time (sec): 14.33 - samples/sec: 5187.40 - lr: 0.000030 - momentum: 0.000000
2023-10-20 09:12:49,549 epoch 5 - iter 1078/1546 - loss 0.11280483 - time (sec): 16.68 - samples/sec: 5176.64 - lr: 0.000029 - momentum: 0.000000
2023-10-20 09:12:51,894 epoch 5 - iter 1232/1546 - loss 0.11613611 - time (sec): 19.03 - samples/sec: 5190.84 - lr: 0.000029 - momentum: 0.000000
2023-10-20 09:12:54,227 epoch 5 - iter 1386/1546 - loss 0.11738124 - time (sec): 21.36 - samples/sec: 5237.78 - lr: 0.000028 - momentum: 0.000000
2023-10-20 09:12:56,571 epoch 5 - iter 1540/1546 - loss 0.11782489 - time (sec): 23.70 - samples/sec: 5223.13 - lr: 0.000028 - momentum: 0.000000
2023-10-20 09:12:56,657 ----------------------------------------------------------------------------------------------------
2023-10-20 09:12:56,658 EPOCH 5 done: loss 0.1176 - lr: 0.000028
2023-10-20 09:12:57,747 DEV : loss 0.08939941972494125 - f1-score (micro avg) 0.6267
2023-10-20 09:12:57,758 saving best model
2023-10-20 09:12:57,799 ----------------------------------------------------------------------------------------------------
2023-10-20 09:13:00,159 epoch 6 - iter 154/1546 - loss 0.08872161 - time (sec): 2.36 - samples/sec: 5059.99 - lr: 0.000027 - momentum: 0.000000
2023-10-20 09:13:02,464 epoch 6 - iter 308/1546 - loss 0.09968058 - time (sec): 4.66 - samples/sec: 5084.02 - lr: 0.000027 - momentum: 0.000000
2023-10-20 09:13:04,684 epoch 6 - iter 462/1546 - loss 0.11229809 - time (sec): 6.88 - samples/sec: 5199.05 - lr: 0.000026 - momentum: 0.000000
2023-10-20 09:13:06,997 epoch 6 - iter 616/1546 - loss 0.11419551 - time (sec): 9.20 - samples/sec: 5295.49 - lr: 0.000026 - momentum: 0.000000
2023-10-20 09:13:09,350 epoch 6 - iter 770/1546 - loss 0.11917538 - time (sec): 11.55 - samples/sec: 5221.45 - lr: 0.000025 - momentum: 0.000000
2023-10-20 09:13:11,733 epoch 6 - iter 924/1546 - loss 0.11515995 - time (sec): 13.93 - samples/sec: 5261.77 - lr: 0.000024 - momentum: 0.000000
2023-10-20 09:13:14,094 epoch 6 - iter 1078/1546 - loss 0.11259375 - time (sec): 16.29 - samples/sec: 5263.95 - lr: 0.000024 - momentum: 0.000000
2023-10-20 09:13:16,462 epoch 6 - iter 1232/1546 - loss 0.11096846 - time (sec): 18.66 - samples/sec: 5300.25 - lr: 0.000023 - momentum: 0.000000
2023-10-20 09:13:18,893 epoch 6 - iter 1386/1546 - loss 0.10972238 - time (sec): 21.09 - samples/sec: 5240.06 - lr: 0.000023 - momentum: 0.000000
2023-10-20 09:13:21,286 epoch 6 - iter 1540/1546 - loss 0.11215844 - time (sec): 23.49 - samples/sec: 5270.28 - lr: 0.000022 - momentum: 0.000000
2023-10-20 09:13:21,383 ----------------------------------------------------------------------------------------------------
2023-10-20 09:13:21,383 EPOCH 6 done: loss 0.1120 - lr: 0.000022
2023-10-20 09:13:22,455 DEV : loss 0.09400177001953125 - f1-score (micro avg) 0.6277
2023-10-20 09:13:22,466 saving best model
2023-10-20 09:13:22,504 ----------------------------------------------------------------------------------------------------
2023-10-20 09:13:24,908 epoch 7 - iter 154/1546 - loss 0.09411116 - time (sec): 2.40 - samples/sec: 5586.60 - lr: 0.000022 - momentum: 0.000000
2023-10-20 09:13:27,265 epoch 7 - iter 308/1546 - loss 0.09632697 - time (sec): 4.76 - samples/sec: 5224.96 - lr: 0.000021 - momentum: 0.000000
2023-10-20 09:13:29,641 epoch 7 - iter 462/1546 - loss 0.09562559 - time (sec): 7.14 - samples/sec: 5309.35 - lr: 0.000021 - momentum: 0.000000
2023-10-20 09:13:31,989 epoch 7 - iter 616/1546 - loss 0.10402549 - time (sec): 9.48 - samples/sec: 5216.81 - lr: 0.000020 - momentum: 0.000000
2023-10-20 09:13:34,288 epoch 7 - iter 770/1546 - loss 0.10461845 - time (sec): 11.78 - samples/sec: 5274.04 - lr: 0.000019 - momentum: 0.000000
2023-10-20 09:13:36,410 epoch 7 - iter 924/1546 - loss 0.10415072 - time (sec): 13.90 - samples/sec: 5376.86 - lr: 0.000019 - momentum: 0.000000
2023-10-20 09:13:38,645 epoch 7 - iter 1078/1546 - loss 0.10743332 - time (sec): 16.14 - samples/sec: 5412.25 - lr: 0.000018 - momentum: 0.000000
2023-10-20 09:13:41,006 epoch 7 - iter 1232/1546 - loss 0.10558366 - time (sec): 18.50 - samples/sec: 5404.84 - lr: 0.000018 - momentum: 0.000000
2023-10-20 09:13:43,579 epoch 7 - iter 1386/1546 - loss 0.10551425 - time (sec): 21.07 - samples/sec: 5300.25 - lr: 0.000017 - momentum: 0.000000
2023-10-20 09:13:45,933 epoch 7 - iter 1540/1546 - loss 0.10494098 - time (sec): 23.43 - samples/sec: 5284.63 - lr: 0.000017 - momentum: 0.000000
2023-10-20 09:13:46,027 ----------------------------------------------------------------------------------------------------
2023-10-20 09:13:46,027 EPOCH 7 done: loss 0.1047 - lr: 0.000017
2023-10-20 09:13:47,115 DEV : loss 0.09695922583341599 - f1-score (micro avg) 0.6178
2023-10-20 09:13:47,126 ----------------------------------------------------------------------------------------------------
2023-10-20 09:13:49,425 epoch 8 - iter 154/1546 - loss 0.08797545 - time (sec): 2.30 - samples/sec: 5296.74 - lr: 0.000016 - momentum: 0.000000
2023-10-20 09:13:51,802 epoch 8 - iter 308/1546 - loss 0.10794391 - time (sec): 4.68 - samples/sec: 5329.23 - lr: 0.000016 - momentum: 0.000000
2023-10-20 09:13:54,171 epoch 8 - iter 462/1546 - loss 0.10855675 - time (sec): 7.04 - samples/sec: 5239.55 - lr: 0.000015 - momentum: 0.000000
2023-10-20 09:13:56,557 epoch 8 - iter 616/1546 - loss 0.10232047 - time (sec): 9.43 - samples/sec: 5223.60 - lr: 0.000014 - momentum: 0.000000
2023-10-20 09:13:58,954 epoch 8 - iter 770/1546 - loss 0.09935293 - time (sec): 11.83 - samples/sec: 5269.56 - lr: 0.000014 - momentum: 0.000000
2023-10-20 09:14:01,388 epoch 8 - iter 924/1546 - loss 0.10163157 - time (sec): 14.26 - samples/sec: 5306.60 - lr: 0.000013 - momentum: 0.000000
2023-10-20 09:14:03,750 epoch 8 - iter 1078/1546 - loss 0.10110793 - time (sec): 16.62 - samples/sec: 5242.19 - lr: 0.000013 - momentum: 0.000000
2023-10-20 09:14:06,284 epoch 8 - iter 1232/1546 - loss 0.10225598 - time (sec): 19.16 - samples/sec: 5149.27 - lr: 0.000012 - momentum: 0.000000
2023-10-20 09:14:08,735 epoch 8 - iter 1386/1546 - loss 0.10032493 - time (sec): 21.61 - samples/sec: 5128.91 - lr: 0.000012 - momentum: 0.000000
2023-10-20 09:14:11,087 epoch 8 - iter 1540/1546 - loss 0.10017520 - time (sec): 23.96 - samples/sec: 5173.61 - lr: 0.000011 - momentum: 0.000000
2023-10-20 09:14:11,172 ----------------------------------------------------------------------------------------------------
2023-10-20 09:14:11,173 EPOCH 8 done: loss 0.0999 - lr: 0.000011
2023-10-20 09:14:12,276 DEV : loss 0.0992686077952385 - f1-score (micro avg) 0.6596
2023-10-20 09:14:12,288 saving best model
2023-10-20 09:14:12,327 ----------------------------------------------------------------------------------------------------
2023-10-20 09:14:14,673 epoch 9 - iter 154/1546 - loss 0.09650209 - time (sec): 2.34 - samples/sec: 5217.56 - lr: 0.000011 - momentum: 0.000000
2023-10-20 09:14:17,050 epoch 9 - iter 308/1546 - loss 0.09691759 - time (sec): 4.72 - samples/sec: 5228.76 - lr: 0.000010 - momentum: 0.000000
2023-10-20 09:14:19,749 epoch 9 - iter 462/1546 - loss 0.08896325 - time (sec): 7.42 - samples/sec: 5141.17 - lr: 0.000009 - momentum: 0.000000
2023-10-20 09:14:22,118 epoch 9 - iter 616/1546 - loss 0.09060288 - time (sec): 9.79 - samples/sec: 5112.64 - lr: 0.000009 - momentum: 0.000000
2023-10-20 09:14:24,967 epoch 9 - iter 770/1546 - loss 0.09200760 - time (sec): 12.64 - samples/sec: 5010.50 - lr: 0.000008 - momentum: 0.000000
2023-10-20 09:14:27,319 epoch 9 - iter 924/1546 - loss 0.09609571 - time (sec): 14.99 - samples/sec: 5019.42 - lr: 0.000008 - momentum: 0.000000
2023-10-20 09:14:29,709 epoch 9 - iter 1078/1546 - loss 0.09667665 - time (sec): 17.38 - samples/sec: 5059.47 - lr: 0.000007 - momentum: 0.000000
2023-10-20 09:14:31,891 epoch 9 - iter 1232/1546 - loss 0.09768930 - time (sec): 19.56 - samples/sec: 5118.55 - lr: 0.000007 - momentum: 0.000000
2023-10-20 09:14:33,996 epoch 9 - iter 1386/1546 - loss 0.09587500 - time (sec): 21.67 - samples/sec: 5148.30 - lr: 0.000006 - momentum: 0.000000
2023-10-20 09:14:36,398 epoch 9 - iter 1540/1546 - loss 0.09560318 - time (sec): 24.07 - samples/sec: 5146.90 - lr: 0.000006 - momentum: 0.000000
2023-10-20 09:14:36,489 ----------------------------------------------------------------------------------------------------
2023-10-20 09:14:36,489 EPOCH 9 done: loss 0.0955 - lr: 0.000006
2023-10-20 09:14:37,585 DEV : loss 0.10322442650794983 - f1-score (micro avg) 0.6681
2023-10-20 09:14:37,599 saving best model
2023-10-20 09:14:37,640 ----------------------------------------------------------------------------------------------------
2023-10-20 09:14:40,061 epoch 10 - iter 154/1546 - loss 0.10143281 - time (sec): 2.42 - samples/sec: 4964.82 - lr: 0.000005 - momentum: 0.000000
2023-10-20 09:14:42,441 epoch 10 - iter 308/1546 - loss 0.09450071 - time (sec): 4.80 - samples/sec: 5182.99 - lr: 0.000004 - momentum: 0.000000
2023-10-20 09:14:44,855 epoch 10 - iter 462/1546 - loss 0.09346281 - time (sec): 7.21 - samples/sec: 5283.85 - lr: 0.000004 - momentum: 0.000000
2023-10-20 09:14:47,239 epoch 10 - iter 616/1546 - loss 0.08973317 - time (sec): 9.60 - samples/sec: 5299.01 - lr: 0.000003 - momentum: 0.000000
2023-10-20 09:14:49,607 epoch 10 - iter 770/1546 - loss 0.09059757 - time (sec): 11.97 - samples/sec: 5271.13 - lr: 0.000003 - momentum: 0.000000
2023-10-20 09:14:51,921 epoch 10 - iter 924/1546 - loss 0.08753361 - time (sec): 14.28 - samples/sec: 5270.05 - lr: 0.000002 - momentum: 0.000000
2023-10-20 09:14:54,314 epoch 10 - iter 1078/1546 - loss 0.08603652 - time (sec): 16.67 - samples/sec: 5279.61 - lr: 0.000002 - momentum: 0.000000
2023-10-20 09:14:56,639 epoch 10 - iter 1232/1546 - loss 0.08568308 - time (sec): 19.00 - samples/sec: 5238.99 - lr: 0.000001 - momentum: 0.000000
2023-10-20 09:14:58,992 epoch 10 - iter 1386/1546 - loss 0.09015758 - time (sec): 21.35 - samples/sec: 5236.68 - lr: 0.000001 - momentum: 0.000000
2023-10-20 09:15:01,422 epoch 10 - iter 1540/1546 - loss 0.09146122 - time (sec): 23.78 - samples/sec: 5213.58 - lr: 0.000000 - momentum: 0.000000
2023-10-20 09:15:01,505 ----------------------------------------------------------------------------------------------------
2023-10-20 09:15:01,505 EPOCH 10 done: loss 0.0914 - lr: 0.000000
2023-10-20 09:15:02,613 DEV : loss 0.10447753965854645 - f1-score (micro avg) 0.6652
2023-10-20 09:15:02,654 ----------------------------------------------------------------------------------------------------
2023-10-20 09:15:02,654 Loading model from best epoch ...
2023-10-20 09:15:02,745 SequenceTagger predicts: Dictionary with 13 tags: O, S-LOC, B-LOC, E-LOC, I-LOC, S-BUILDING, B-BUILDING, E-BUILDING, I-BUILDING, S-STREET, B-STREET, E-STREET, I-STREET
2023-10-20 09:15:05,674
Results:
- F-score (micro) 0.5997
- F-score (macro) 0.4121
- Accuracy 0.4447
By class:
precision recall f1-score support
LOC 0.6404 0.6776 0.6584 946
BUILDING 0.3924 0.1676 0.2348 185
STREET 0.8571 0.2143 0.3429 56
micro avg 0.6252 0.5762 0.5997 1187
macro avg 0.6300 0.3531 0.4121 1187
weighted avg 0.6119 0.5762 0.5775 1187
2023-10-20 09:15:05,674 ----------------------------------------------------------------------------------------------------