hkivancoral
commited on
Commit
•
237ed3b
1
Parent(s):
494fc29
End of training
Browse files- README.md +125 -0
- pytorch_model.bin +1 -1
README.md
ADDED
@@ -0,0 +1,125 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: facebook/deit-tiny-patch16-224
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
datasets:
|
7 |
+
- imagefolder
|
8 |
+
metrics:
|
9 |
+
- accuracy
|
10 |
+
model-index:
|
11 |
+
- name: smids_5x_deit_tiny_rms_00001_fold1
|
12 |
+
results:
|
13 |
+
- task:
|
14 |
+
name: Image Classification
|
15 |
+
type: image-classification
|
16 |
+
dataset:
|
17 |
+
name: imagefolder
|
18 |
+
type: imagefolder
|
19 |
+
config: default
|
20 |
+
split: test
|
21 |
+
args: default
|
22 |
+
metrics:
|
23 |
+
- name: Accuracy
|
24 |
+
type: accuracy
|
25 |
+
value: 0.8981636060100167
|
26 |
+
---
|
27 |
+
|
28 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
29 |
+
should probably proofread and complete it, then remove this comment. -->
|
30 |
+
|
31 |
+
# smids_5x_deit_tiny_rms_00001_fold1
|
32 |
+
|
33 |
+
This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co/facebook/deit-tiny-patch16-224) on the imagefolder dataset.
|
34 |
+
It achieves the following results on the evaluation set:
|
35 |
+
- Loss: 0.9495
|
36 |
+
- Accuracy: 0.8982
|
37 |
+
|
38 |
+
## Model description
|
39 |
+
|
40 |
+
More information needed
|
41 |
+
|
42 |
+
## Intended uses & limitations
|
43 |
+
|
44 |
+
More information needed
|
45 |
+
|
46 |
+
## Training and evaluation data
|
47 |
+
|
48 |
+
More information needed
|
49 |
+
|
50 |
+
## Training procedure
|
51 |
+
|
52 |
+
### Training hyperparameters
|
53 |
+
|
54 |
+
The following hyperparameters were used during training:
|
55 |
+
- learning_rate: 1e-05
|
56 |
+
- train_batch_size: 32
|
57 |
+
- eval_batch_size: 32
|
58 |
+
- seed: 42
|
59 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
60 |
+
- lr_scheduler_type: linear
|
61 |
+
- lr_scheduler_warmup_ratio: 0.1
|
62 |
+
- num_epochs: 50
|
63 |
+
|
64 |
+
### Training results
|
65 |
+
|
66 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
67 |
+
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
|
68 |
+
| 0.2593 | 1.0 | 376 | 0.3151 | 0.8765 |
|
69 |
+
| 0.1718 | 2.0 | 752 | 0.2623 | 0.8998 |
|
70 |
+
| 0.1615 | 3.0 | 1128 | 0.2861 | 0.8965 |
|
71 |
+
| 0.0982 | 4.0 | 1504 | 0.3444 | 0.8881 |
|
72 |
+
| 0.0553 | 5.0 | 1880 | 0.3784 | 0.9098 |
|
73 |
+
| 0.0747 | 6.0 | 2256 | 0.5204 | 0.8881 |
|
74 |
+
| 0.0183 | 7.0 | 2632 | 0.5683 | 0.8948 |
|
75 |
+
| 0.0068 | 8.0 | 3008 | 0.6428 | 0.8998 |
|
76 |
+
| 0.0727 | 9.0 | 3384 | 0.7962 | 0.8815 |
|
77 |
+
| 0.0001 | 10.0 | 3760 | 0.7940 | 0.8965 |
|
78 |
+
| 0.001 | 11.0 | 4136 | 0.9819 | 0.8681 |
|
79 |
+
| 0.0 | 12.0 | 4512 | 0.8908 | 0.8848 |
|
80 |
+
| 0.0018 | 13.0 | 4888 | 0.8621 | 0.8865 |
|
81 |
+
| 0.0198 | 14.0 | 5264 | 0.8948 | 0.8881 |
|
82 |
+
| 0.0291 | 15.0 | 5640 | 0.9361 | 0.8915 |
|
83 |
+
| 0.0001 | 16.0 | 6016 | 0.7825 | 0.8948 |
|
84 |
+
| 0.0 | 17.0 | 6392 | 0.8996 | 0.8815 |
|
85 |
+
| 0.0001 | 18.0 | 6768 | 0.8212 | 0.8948 |
|
86 |
+
| 0.0026 | 19.0 | 7144 | 0.8543 | 0.8831 |
|
87 |
+
| 0.0145 | 20.0 | 7520 | 0.8936 | 0.8881 |
|
88 |
+
| 0.004 | 21.0 | 7896 | 0.9825 | 0.8815 |
|
89 |
+
| 0.0 | 22.0 | 8272 | 0.9004 | 0.8932 |
|
90 |
+
| 0.0001 | 23.0 | 8648 | 0.8961 | 0.8965 |
|
91 |
+
| 0.0 | 24.0 | 9024 | 1.0000 | 0.8915 |
|
92 |
+
| 0.0 | 25.0 | 9400 | 0.9507 | 0.8865 |
|
93 |
+
| 0.079 | 26.0 | 9776 | 1.0040 | 0.8865 |
|
94 |
+
| 0.0 | 27.0 | 10152 | 0.9365 | 0.8998 |
|
95 |
+
| 0.0 | 28.0 | 10528 | 0.9689 | 0.8815 |
|
96 |
+
| 0.0089 | 29.0 | 10904 | 0.9542 | 0.8898 |
|
97 |
+
| 0.0105 | 30.0 | 11280 | 0.9853 | 0.8898 |
|
98 |
+
| 0.0 | 31.0 | 11656 | 0.9962 | 0.8965 |
|
99 |
+
| 0.0 | 32.0 | 12032 | 0.9324 | 0.8982 |
|
100 |
+
| 0.0 | 33.0 | 12408 | 1.0542 | 0.8881 |
|
101 |
+
| 0.0 | 34.0 | 12784 | 0.9887 | 0.8932 |
|
102 |
+
| 0.0 | 35.0 | 13160 | 0.8827 | 0.9082 |
|
103 |
+
| 0.0 | 36.0 | 13536 | 0.8957 | 0.8982 |
|
104 |
+
| 0.0 | 37.0 | 13912 | 0.9316 | 0.8932 |
|
105 |
+
| 0.0 | 38.0 | 14288 | 0.9562 | 0.8915 |
|
106 |
+
| 0.0 | 39.0 | 14664 | 0.9229 | 0.8982 |
|
107 |
+
| 0.0 | 40.0 | 15040 | 0.9352 | 0.8932 |
|
108 |
+
| 0.0 | 41.0 | 15416 | 0.9221 | 0.8915 |
|
109 |
+
| 0.0 | 42.0 | 15792 | 0.9253 | 0.8965 |
|
110 |
+
| 0.0 | 43.0 | 16168 | 0.9330 | 0.8881 |
|
111 |
+
| 0.0 | 44.0 | 16544 | 0.9447 | 0.8965 |
|
112 |
+
| 0.0 | 45.0 | 16920 | 0.9432 | 0.8965 |
|
113 |
+
| 0.0047 | 46.0 | 17296 | 0.9445 | 0.8965 |
|
114 |
+
| 0.0 | 47.0 | 17672 | 0.9464 | 0.8948 |
|
115 |
+
| 0.0 | 48.0 | 18048 | 0.9465 | 0.8948 |
|
116 |
+
| 0.0 | 49.0 | 18424 | 0.9475 | 0.8982 |
|
117 |
+
| 0.0039 | 50.0 | 18800 | 0.9495 | 0.8982 |
|
118 |
+
|
119 |
+
|
120 |
+
### Framework versions
|
121 |
+
|
122 |
+
- Transformers 4.32.1
|
123 |
+
- Pytorch 2.1.1+cu121
|
124 |
+
- Datasets 2.12.0
|
125 |
+
- Tokenizers 0.13.2
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 22167850
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a3dd86f14b714ad84bf5a23e35311c0dc43fd21b06f18461911ed91cf9d58330
|
3 |
size 22167850
|