File size: 4,865 Bytes
60f9164
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
---
license: apache-2.0
base_model: facebook/deit-base-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: smids_3x_deit_base_rms_00001_fold4
  results:
  - task:
      name: Image Classification
      type: image-classification
    dataset:
      name: imagefolder
      type: imagefolder
      config: default
      split: test
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.8766666666666667
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# smids_3x_deit_base_rms_00001_fold4

This model is a fine-tuned version of [facebook/deit-base-patch16-224](https://huggingface.co./facebook/deit-base-patch16-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1238
- Accuracy: 0.8767

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 0.2323        | 1.0   | 225   | 0.3035          | 0.8817   |
| 0.1222        | 2.0   | 450   | 0.3392          | 0.8867   |
| 0.0332        | 3.0   | 675   | 0.4670          | 0.875    |
| 0.0456        | 4.0   | 900   | 0.5479          | 0.8817   |
| 0.0021        | 5.0   | 1125  | 0.5591          | 0.8867   |
| 0.0132        | 6.0   | 1350  | 0.7507          | 0.8633   |
| 0.0101        | 7.0   | 1575  | 0.7420          | 0.8883   |
| 0.0016        | 8.0   | 1800  | 0.6836          | 0.8933   |
| 0.0523        | 9.0   | 2025  | 0.8255          | 0.8783   |
| 0.0254        | 10.0  | 2250  | 1.1197          | 0.8483   |
| 0.0014        | 11.0  | 2475  | 0.7120          | 0.885    |
| 0.0           | 12.0  | 2700  | 0.7666          | 0.8917   |
| 0.0178        | 13.0  | 2925  | 0.6967          | 0.8917   |
| 0.0002        | 14.0  | 3150  | 0.8484          | 0.8867   |
| 0.0577        | 15.0  | 3375  | 0.8550          | 0.885    |
| 0.0           | 16.0  | 3600  | 0.8425          | 0.89     |
| 0.0024        | 17.0  | 3825  | 0.8953          | 0.8767   |
| 0.0           | 18.0  | 4050  | 0.9355          | 0.885    |
| 0.0001        | 19.0  | 4275  | 0.8404          | 0.89     |
| 0.0           | 20.0  | 4500  | 0.8809          | 0.885    |
| 0.0172        | 21.0  | 4725  | 0.8605          | 0.8883   |
| 0.0           | 22.0  | 4950  | 0.9436          | 0.8817   |
| 0.0323        | 23.0  | 5175  | 0.9309          | 0.8833   |
| 0.0           | 24.0  | 5400  | 0.9068          | 0.89     |
| 0.0           | 25.0  | 5625  | 0.9079          | 0.8817   |
| 0.0           | 26.0  | 5850  | 0.9066          | 0.89     |
| 0.0           | 27.0  | 6075  | 1.0773          | 0.87     |
| 0.0           | 28.0  | 6300  | 1.1035          | 0.8717   |
| 0.0           | 29.0  | 6525  | 1.0736          | 0.8717   |
| 0.0001        | 30.0  | 6750  | 1.1428          | 0.8733   |
| 0.0           | 31.0  | 6975  | 1.0098          | 0.8767   |
| 0.0           | 32.0  | 7200  | 1.0179          | 0.88     |
| 0.0003        | 33.0  | 7425  | 1.0539          | 0.875    |
| 0.0           | 34.0  | 7650  | 1.0462          | 0.8783   |
| 0.0           | 35.0  | 7875  | 1.0532          | 0.8817   |
| 0.0           | 36.0  | 8100  | 1.0591          | 0.8783   |
| 0.0           | 37.0  | 8325  | 1.0682          | 0.8783   |
| 0.0           | 38.0  | 8550  | 1.0909          | 0.8783   |
| 0.0           | 39.0  | 8775  | 1.0760          | 0.8833   |
| 0.0           | 40.0  | 9000  | 1.0817          | 0.8733   |
| 0.0           | 41.0  | 9225  | 1.0943          | 0.8717   |
| 0.003         | 42.0  | 9450  | 1.1042          | 0.8767   |
| 0.0           | 43.0  | 9675  | 1.0995          | 0.875    |
| 0.0027        | 44.0  | 9900  | 1.1108          | 0.8767   |
| 0.0           | 45.0  | 10125 | 1.1127          | 0.8783   |
| 0.0           | 46.0  | 10350 | 1.1166          | 0.8783   |
| 0.0           | 47.0  | 10575 | 1.1195          | 0.8783   |
| 0.0           | 48.0  | 10800 | 1.1208          | 0.8783   |
| 0.0           | 49.0  | 11025 | 1.1237          | 0.8767   |
| 0.0           | 50.0  | 11250 | 1.1238          | 0.8767   |


### Framework versions

- Transformers 4.32.1
- Pytorch 2.1.0+cu121
- Datasets 2.12.0
- Tokenizers 0.13.2