File size: 4,811 Bytes
ffdf8d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
---
license: apache-2.0
base_model: facebook/deit-base-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: hushem_5x_deit_base_rms_001_fold2
  results:
  - task:
      name: Image Classification
      type: image-classification
    dataset:
      name: imagefolder
      type: imagefolder
      config: default
      split: test
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.5333333333333333
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# hushem_5x_deit_base_rms_001_fold2

This model is a fine-tuned version of [facebook/deit-base-patch16-224](https://huggingface.co./facebook/deit-base-patch16-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 2.4335
- Accuracy: 0.5333

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.7708        | 1.0   | 27   | 1.4022          | 0.2444   |
| 1.4249        | 2.0   | 54   | 1.3804          | 0.4444   |
| 1.3964        | 3.0   | 81   | 1.3634          | 0.2667   |
| 1.4087        | 4.0   | 108  | 1.4138          | 0.2444   |
| 1.5106        | 5.0   | 135  | 1.3226          | 0.3333   |
| 1.5674        | 6.0   | 162  | 1.3745          | 0.2444   |
| 1.5358        | 7.0   | 189  | 1.3178          | 0.3778   |
| 1.3201        | 8.0   | 216  | 1.0950          | 0.4      |
| 1.624         | 9.0   | 243  | 1.3141          | 0.3111   |
| 1.1174        | 10.0  | 270  | 1.4549          | 0.3778   |
| 1.1475        | 11.0  | 297  | 0.9651          | 0.5778   |
| 1.0882        | 12.0  | 324  | 0.9475          | 0.5778   |
| 1.0589        | 13.0  | 351  | 1.0498          | 0.5111   |
| 1.0658        | 14.0  | 378  | 0.9947          | 0.5333   |
| 0.9897        | 15.0  | 405  | 0.9894          | 0.5333   |
| 0.9767        | 16.0  | 432  | 0.9550          | 0.5778   |
| 0.984         | 17.0  | 459  | 0.9380          | 0.5778   |
| 1.0081        | 18.0  | 486  | 1.0509          | 0.4889   |
| 0.8973        | 19.0  | 513  | 0.9732          | 0.4444   |
| 0.8473        | 20.0  | 540  | 1.0049          | 0.4444   |
| 0.7086        | 21.0  | 567  | 1.0847          | 0.4889   |
| 0.7379        | 22.0  | 594  | 1.4535          | 0.4889   |
| 0.7312        | 23.0  | 621  | 1.2763          | 0.5333   |
| 0.6995        | 24.0  | 648  | 1.1444          | 0.3778   |
| 0.6998        | 25.0  | 675  | 1.1643          | 0.3778   |
| 0.7046        | 26.0  | 702  | 1.3603          | 0.5333   |
| 0.6675        | 27.0  | 729  | 1.3027          | 0.6222   |
| 0.6228        | 28.0  | 756  | 1.2068          | 0.4222   |
| 0.5922        | 29.0  | 783  | 1.6511          | 0.5333   |
| 0.6546        | 30.0  | 810  | 1.2512          | 0.4      |
| 0.5393        | 31.0  | 837  | 1.4819          | 0.5333   |
| 0.6185        | 32.0  | 864  | 1.3700          | 0.5111   |
| 0.6184        | 33.0  | 891  | 1.5080          | 0.5556   |
| 0.5907        | 34.0  | 918  | 1.4939          | 0.4222   |
| 0.5753        | 35.0  | 945  | 1.4588          | 0.3556   |
| 0.5557        | 36.0  | 972  | 1.4314          | 0.5111   |
| 0.4886        | 37.0  | 999  | 1.8012          | 0.5556   |
| 0.4981        | 38.0  | 1026 | 1.7648          | 0.5333   |
| 0.4253        | 39.0  | 1053 | 1.7892          | 0.5556   |
| 0.3579        | 40.0  | 1080 | 2.2102          | 0.5111   |
| 0.4246        | 41.0  | 1107 | 1.6607          | 0.5556   |
| 0.3838        | 42.0  | 1134 | 2.0356          | 0.5333   |
| 0.3957        | 43.0  | 1161 | 2.0405          | 0.5111   |
| 0.3149        | 44.0  | 1188 | 2.1882          | 0.5333   |
| 0.3434        | 45.0  | 1215 | 2.2887          | 0.5333   |
| 0.2478        | 46.0  | 1242 | 2.3165          | 0.5556   |
| 0.2362        | 47.0  | 1269 | 2.4365          | 0.5333   |
| 0.2191        | 48.0  | 1296 | 2.4233          | 0.5333   |
| 0.1896        | 49.0  | 1323 | 2.4335          | 0.5333   |
| 0.2369        | 50.0  | 1350 | 2.4335          | 0.5333   |


### Framework versions

- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0