--- license: apache-2.0 base_model: facebook/deit-tiny-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: hushem_40x_deit_tiny_rms_0001_fold4 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.9523809523809523 --- # hushem_40x_deit_tiny_rms_0001_fold4 This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co./facebook/deit-tiny-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.4037 - Accuracy: 0.9524 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.1838 | 1.0 | 219 | 0.4926 | 0.8571 | | 0.0446 | 2.0 | 438 | 0.2754 | 0.9286 | | 0.0295 | 3.0 | 657 | 0.9751 | 0.8810 | | 0.0096 | 4.0 | 876 | 0.1123 | 0.9762 | | 0.0055 | 5.0 | 1095 | 0.3687 | 0.9048 | | 0.0033 | 6.0 | 1314 | 0.3076 | 0.9524 | | 0.0283 | 7.0 | 1533 | 0.8089 | 0.8571 | | 0.0044 | 8.0 | 1752 | 0.2435 | 0.9286 | | 0.0018 | 9.0 | 1971 | 0.7038 | 0.8571 | | 0.0191 | 10.0 | 2190 | 0.5242 | 0.9048 | | 0.0001 | 11.0 | 2409 | 0.8130 | 0.9286 | | 0.0007 | 12.0 | 2628 | 0.6030 | 0.9048 | | 0.0189 | 13.0 | 2847 | 0.5406 | 0.9048 | | 0.0002 | 14.0 | 3066 | 0.6774 | 0.8571 | | 0.0018 | 15.0 | 3285 | 0.6982 | 0.9286 | | 0.0001 | 16.0 | 3504 | 0.3877 | 0.9524 | | 0.0008 | 17.0 | 3723 | 0.6996 | 0.8810 | | 0.0 | 18.0 | 3942 | 0.5507 | 0.9286 | | 0.0 | 19.0 | 4161 | 0.3796 | 0.9524 | | 0.0001 | 20.0 | 4380 | 0.3967 | 0.9286 | | 0.0 | 21.0 | 4599 | 0.4081 | 0.9286 | | 0.0 | 22.0 | 4818 | 0.3898 | 0.9286 | | 0.0 | 23.0 | 5037 | 0.3709 | 0.9286 | | 0.0 | 24.0 | 5256 | 0.3640 | 0.9524 | | 0.0 | 25.0 | 5475 | 0.3789 | 0.9524 | | 0.0 | 26.0 | 5694 | 0.3987 | 0.9286 | | 0.0 | 27.0 | 5913 | 0.4326 | 0.9286 | | 0.0 | 28.0 | 6132 | 0.4566 | 0.9286 | | 0.0 | 29.0 | 6351 | 0.4673 | 0.9286 | | 0.0 | 30.0 | 6570 | 0.4642 | 0.9286 | | 0.0 | 31.0 | 6789 | 0.4534 | 0.9286 | | 0.0 | 32.0 | 7008 | 0.4388 | 0.9286 | | 0.0 | 33.0 | 7227 | 0.4268 | 0.9286 | | 0.0 | 34.0 | 7446 | 0.4182 | 0.9286 | | 0.0 | 35.0 | 7665 | 0.4134 | 0.9286 | | 0.0 | 36.0 | 7884 | 0.4102 | 0.9286 | | 0.0 | 37.0 | 8103 | 0.4079 | 0.9286 | | 0.0 | 38.0 | 8322 | 0.4066 | 0.9286 | | 0.0 | 39.0 | 8541 | 0.4041 | 0.9286 | | 0.0 | 40.0 | 8760 | 0.4048 | 0.9286 | | 0.0 | 41.0 | 8979 | 0.4034 | 0.9524 | | 0.0 | 42.0 | 9198 | 0.4032 | 0.9524 | | 0.0 | 43.0 | 9417 | 0.4038 | 0.9524 | | 0.0 | 44.0 | 9636 | 0.4040 | 0.9524 | | 0.0 | 45.0 | 9855 | 0.4040 | 0.9524 | | 0.0 | 46.0 | 10074 | 0.4038 | 0.9524 | | 0.0 | 47.0 | 10293 | 0.4038 | 0.9524 | | 0.0 | 48.0 | 10512 | 0.4039 | 0.9524 | | 0.0 | 49.0 | 10731 | 0.4037 | 0.9524 | | 0.0 | 50.0 | 10950 | 0.4037 | 0.9524 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.1+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2