--- license: apache-2.0 base_model: facebook/deit-tiny-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: hushem_40x_deit_tiny_f3 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.9069767441860465 --- # hushem_40x_deit_tiny_f3 This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co./facebook/deit-tiny-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.7420 - Accuracy: 0.9070 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.1605 | 1.0 | 108 | 0.5491 | 0.7674 | | 0.067 | 2.0 | 217 | 0.3900 | 0.9070 | | 0.0289 | 3.0 | 325 | 0.7123 | 0.8372 | | 0.0006 | 4.0 | 434 | 0.6304 | 0.9302 | | 0.0039 | 5.0 | 542 | 0.7304 | 0.8837 | | 0.0003 | 6.0 | 651 | 0.9750 | 0.8372 | | 0.0 | 7.0 | 759 | 0.7131 | 0.8837 | | 0.0 | 8.0 | 868 | 0.7257 | 0.9070 | | 0.0 | 9.0 | 976 | 0.7388 | 0.9070 | | 0.0 | 9.95 | 1080 | 0.7420 | 0.9070 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1