--- license: apache-2.0 base_model: facebook/deit-tiny-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: hushem_1x_deit_tiny_rms_00001_fold5 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.6585365853658537 --- # hushem_1x_deit_tiny_rms_00001_fold5 This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co./facebook/deit-tiny-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.1280 - Accuracy: 0.6585 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 6 | 1.2888 | 0.4390 | | 1.3565 | 2.0 | 12 | 1.0130 | 0.5366 | | 1.3565 | 3.0 | 18 | 0.9361 | 0.5366 | | 0.667 | 4.0 | 24 | 0.8831 | 0.6585 | | 0.2929 | 5.0 | 30 | 0.8739 | 0.5854 | | 0.2929 | 6.0 | 36 | 0.9329 | 0.5854 | | 0.1055 | 7.0 | 42 | 0.9159 | 0.6585 | | 0.1055 | 8.0 | 48 | 1.0700 | 0.5854 | | 0.04 | 9.0 | 54 | 1.0357 | 0.5854 | | 0.013 | 10.0 | 60 | 0.9379 | 0.6585 | | 0.013 | 11.0 | 66 | 0.9964 | 0.6341 | | 0.0046 | 12.0 | 72 | 1.0009 | 0.6585 | | 0.0046 | 13.0 | 78 | 0.9889 | 0.6585 | | 0.0029 | 14.0 | 84 | 1.0074 | 0.6585 | | 0.0023 | 15.0 | 90 | 1.0258 | 0.6585 | | 0.0023 | 16.0 | 96 | 1.0330 | 0.6585 | | 0.0018 | 17.0 | 102 | 1.0391 | 0.6585 | | 0.0018 | 18.0 | 108 | 1.0476 | 0.6585 | | 0.0015 | 19.0 | 114 | 1.0552 | 0.6585 | | 0.0013 | 20.0 | 120 | 1.0615 | 0.6585 | | 0.0013 | 21.0 | 126 | 1.0642 | 0.6585 | | 0.0011 | 22.0 | 132 | 1.0600 | 0.6585 | | 0.0011 | 23.0 | 138 | 1.0791 | 0.6341 | | 0.001 | 24.0 | 144 | 1.0890 | 0.6585 | | 0.001 | 25.0 | 150 | 1.0948 | 0.6585 | | 0.001 | 26.0 | 156 | 1.1067 | 0.6585 | | 0.0008 | 27.0 | 162 | 1.0949 | 0.6585 | | 0.0008 | 28.0 | 168 | 1.1017 | 0.6585 | | 0.0008 | 29.0 | 174 | 1.1094 | 0.6585 | | 0.0007 | 30.0 | 180 | 1.1105 | 0.6585 | | 0.0007 | 31.0 | 186 | 1.1156 | 0.6585 | | 0.0007 | 32.0 | 192 | 1.1158 | 0.6585 | | 0.0007 | 33.0 | 198 | 1.1174 | 0.6585 | | 0.0007 | 34.0 | 204 | 1.1167 | 0.6585 | | 0.0006 | 35.0 | 210 | 1.1206 | 0.6585 | | 0.0006 | 36.0 | 216 | 1.1224 | 0.6585 | | 0.0006 | 37.0 | 222 | 1.1230 | 0.6585 | | 0.0006 | 38.0 | 228 | 1.1253 | 0.6585 | | 0.0006 | 39.0 | 234 | 1.1272 | 0.6585 | | 0.0006 | 40.0 | 240 | 1.1276 | 0.6585 | | 0.0006 | 41.0 | 246 | 1.1278 | 0.6585 | | 0.0006 | 42.0 | 252 | 1.1280 | 0.6585 | | 0.0006 | 43.0 | 258 | 1.1280 | 0.6585 | | 0.0006 | 44.0 | 264 | 1.1280 | 0.6585 | | 0.0006 | 45.0 | 270 | 1.1280 | 0.6585 | | 0.0006 | 46.0 | 276 | 1.1280 | 0.6585 | | 0.0006 | 47.0 | 282 | 1.1280 | 0.6585 | | 0.0006 | 48.0 | 288 | 1.1280 | 0.6585 | | 0.0006 | 49.0 | 294 | 1.1280 | 0.6585 | | 0.0006 | 50.0 | 300 | 1.1280 | 0.6585 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1