--- license: apache-2.0 base_model: facebook/deit-tiny-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: hushem_1x_deit_tiny_adamax_lr001_fold1 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.4444444444444444 --- # hushem_1x_deit_tiny_adamax_lr001_fold1 This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co./facebook/deit-tiny-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.5661 - Accuracy: 0.4444 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 0.67 | 1 | 2.2715 | 0.2667 | | No log | 2.0 | 3 | 2.0269 | 0.4 | | No log | 2.67 | 4 | 1.6111 | 0.2889 | | No log | 4.0 | 6 | 1.4755 | 0.2444 | | No log | 4.67 | 7 | 1.3818 | 0.4667 | | No log | 6.0 | 9 | 1.3523 | 0.3111 | | 1.6844 | 6.67 | 10 | 1.4010 | 0.2444 | | 1.6844 | 8.0 | 12 | 1.2634 | 0.4444 | | 1.6844 | 8.67 | 13 | 1.3983 | 0.4222 | | 1.6844 | 10.0 | 15 | 1.7897 | 0.3778 | | 1.6844 | 10.67 | 16 | 1.7305 | 0.3111 | | 1.6844 | 12.0 | 18 | 1.3560 | 0.4667 | | 1.6844 | 12.67 | 19 | 1.8545 | 0.4222 | | 1.001 | 14.0 | 21 | 2.1000 | 0.3778 | | 1.001 | 14.67 | 22 | 1.2257 | 0.4889 | | 1.001 | 16.0 | 24 | 1.2741 | 0.4444 | | 1.001 | 16.67 | 25 | 1.9098 | 0.3556 | | 1.001 | 18.0 | 27 | 1.4981 | 0.3778 | | 1.001 | 18.67 | 28 | 1.0949 | 0.4222 | | 0.7366 | 20.0 | 30 | 1.1640 | 0.4222 | | 0.7366 | 20.67 | 31 | 1.5156 | 0.3556 | | 0.7366 | 22.0 | 33 | 1.8559 | 0.3556 | | 0.7366 | 22.67 | 34 | 1.5735 | 0.4444 | | 0.7366 | 24.0 | 36 | 1.3202 | 0.4222 | | 0.7366 | 24.67 | 37 | 1.3837 | 0.4222 | | 0.7366 | 26.0 | 39 | 1.6707 | 0.4 | | 0.4908 | 26.67 | 40 | 1.8712 | 0.3778 | | 0.4908 | 28.0 | 42 | 2.1885 | 0.3556 | | 0.4908 | 28.67 | 43 | 2.0505 | 0.3556 | | 0.4908 | 30.0 | 45 | 1.6855 | 0.4 | | 0.4908 | 30.67 | 46 | 1.5304 | 0.4222 | | 0.4908 | 32.0 | 48 | 1.5067 | 0.3778 | | 0.4908 | 32.67 | 49 | 1.5442 | 0.4222 | | 0.3287 | 33.33 | 50 | 1.5661 | 0.4444 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1