File size: 4,800 Bytes
3cfd209
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a94c1a8
3cfd209
 
 
 
 
 
 
 
 
a94c1a8
 
3cfd209
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a94c1a8
3cfd209
 
 
 
 
 
 
 
 
 
 
 
a94c1a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3cfd209
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
---
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: hushem_1x_deit_tiny_adamax_001_fold2
  results:
  - task:
      name: Image Classification
      type: image-classification
    dataset:
      name: imagefolder
      type: imagefolder
      config: default
      split: test
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.6
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# hushem_1x_deit_tiny_adamax_001_fold2

This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co./facebook/deit-tiny-patch16-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 1.6766
- Accuracy: 0.6

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log        | 1.0   | 6    | 1.3194          | 0.2889   |
| 1.3705        | 2.0   | 12   | 1.2766          | 0.3778   |
| 1.3705        | 3.0   | 18   | 1.3268          | 0.5333   |
| 0.7361        | 4.0   | 24   | 1.2927          | 0.5556   |
| 0.3404        | 5.0   | 30   | 1.3610          | 0.5556   |
| 0.3404        | 6.0   | 36   | 1.1429          | 0.5778   |
| 0.1188        | 7.0   | 42   | 1.5833          | 0.5333   |
| 0.1188        | 8.0   | 48   | 1.2765          | 0.6667   |
| 0.0229        | 9.0   | 54   | 1.4099          | 0.6222   |
| 0.0046        | 10.0  | 60   | 1.4395          | 0.6      |
| 0.0046        | 11.0  | 66   | 1.6161          | 0.5556   |
| 0.0013        | 12.0  | 72   | 1.5774          | 0.5778   |
| 0.0013        | 13.0  | 78   | 1.5201          | 0.6      |
| 0.0007        | 14.0  | 84   | 1.5608          | 0.6      |
| 0.0005        | 15.0  | 90   | 1.6187          | 0.5778   |
| 0.0005        | 16.0  | 96   | 1.6424          | 0.5778   |
| 0.0004        | 17.0  | 102  | 1.6470          | 0.5778   |
| 0.0004        | 18.0  | 108  | 1.6480          | 0.6      |
| 0.0003        | 19.0  | 114  | 1.6471          | 0.6      |
| 0.0003        | 20.0  | 120  | 1.6450          | 0.6      |
| 0.0003        | 21.0  | 126  | 1.6532          | 0.6      |
| 0.0003        | 22.0  | 132  | 1.6559          | 0.6      |
| 0.0003        | 23.0  | 138  | 1.6612          | 0.6      |
| 0.0003        | 24.0  | 144  | 1.6668          | 0.6      |
| 0.0002        | 25.0  | 150  | 1.6718          | 0.6      |
| 0.0002        | 26.0  | 156  | 1.6748          | 0.6      |
| 0.0002        | 27.0  | 162  | 1.6728          | 0.6      |
| 0.0002        | 28.0  | 168  | 1.6726          | 0.6      |
| 0.0002        | 29.0  | 174  | 1.6718          | 0.6      |
| 0.0002        | 30.0  | 180  | 1.6716          | 0.6      |
| 0.0002        | 31.0  | 186  | 1.6738          | 0.6      |
| 0.0002        | 32.0  | 192  | 1.6734          | 0.6      |
| 0.0002        | 33.0  | 198  | 1.6748          | 0.6      |
| 0.0002        | 34.0  | 204  | 1.6753          | 0.6      |
| 0.0002        | 35.0  | 210  | 1.6740          | 0.6      |
| 0.0002        | 36.0  | 216  | 1.6735          | 0.6      |
| 0.0002        | 37.0  | 222  | 1.6732          | 0.6      |
| 0.0002        | 38.0  | 228  | 1.6740          | 0.6      |
| 0.0002        | 39.0  | 234  | 1.6751          | 0.6      |
| 0.0002        | 40.0  | 240  | 1.6758          | 0.6      |
| 0.0002        | 41.0  | 246  | 1.6766          | 0.6      |
| 0.0002        | 42.0  | 252  | 1.6766          | 0.6      |
| 0.0002        | 43.0  | 258  | 1.6766          | 0.6      |
| 0.0002        | 44.0  | 264  | 1.6766          | 0.6      |
| 0.0002        | 45.0  | 270  | 1.6766          | 0.6      |
| 0.0002        | 46.0  | 276  | 1.6766          | 0.6      |
| 0.0002        | 47.0  | 282  | 1.6766          | 0.6      |
| 0.0002        | 48.0  | 288  | 1.6766          | 0.6      |
| 0.0002        | 49.0  | 294  | 1.6766          | 0.6      |
| 0.0002        | 50.0  | 300  | 1.6766          | 0.6      |


### Framework versions

- Transformers 4.35.0
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1