--- license: apache-2.0 base_model: facebook/deit-base-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: hushem_1x_deit_base_adamax_00001_fold3 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.7906976744186046 --- # hushem_1x_deit_base_adamax_00001_fold3 This model is a fine-tuned version of [facebook/deit-base-patch16-224](https://huggingface.co./facebook/deit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.6539 - Accuracy: 0.7907 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 6 | 1.3331 | 0.3953 | | 1.3593 | 2.0 | 12 | 1.2859 | 0.5581 | | 1.3593 | 3.0 | 18 | 1.2417 | 0.5581 | | 1.2039 | 4.0 | 24 | 1.1932 | 0.5581 | | 1.0598 | 5.0 | 30 | 1.1339 | 0.5581 | | 1.0598 | 6.0 | 36 | 1.0752 | 0.5814 | | 0.8965 | 7.0 | 42 | 1.0271 | 0.6977 | | 0.8965 | 8.0 | 48 | 0.9915 | 0.6744 | | 0.7657 | 9.0 | 54 | 0.9413 | 0.7209 | | 0.6159 | 10.0 | 60 | 0.8991 | 0.7209 | | 0.6159 | 11.0 | 66 | 0.8637 | 0.6744 | | 0.485 | 12.0 | 72 | 0.8373 | 0.6977 | | 0.485 | 13.0 | 78 | 0.8208 | 0.6977 | | 0.3863 | 14.0 | 84 | 0.7902 | 0.7442 | | 0.3144 | 15.0 | 90 | 0.7725 | 0.7907 | | 0.3144 | 16.0 | 96 | 0.7576 | 0.7907 | | 0.2438 | 17.0 | 102 | 0.7436 | 0.7907 | | 0.2438 | 18.0 | 108 | 0.7294 | 0.8140 | | 0.193 | 19.0 | 114 | 0.7217 | 0.8140 | | 0.1581 | 20.0 | 120 | 0.7141 | 0.7907 | | 0.1581 | 21.0 | 126 | 0.6979 | 0.8140 | | 0.1306 | 22.0 | 132 | 0.6874 | 0.8140 | | 0.1306 | 23.0 | 138 | 0.6970 | 0.8140 | | 0.1005 | 24.0 | 144 | 0.6887 | 0.8140 | | 0.0911 | 25.0 | 150 | 0.6790 | 0.8140 | | 0.0911 | 26.0 | 156 | 0.6739 | 0.8140 | | 0.0714 | 27.0 | 162 | 0.6752 | 0.7907 | | 0.0714 | 28.0 | 168 | 0.6709 | 0.7907 | | 0.0651 | 29.0 | 174 | 0.6638 | 0.8140 | | 0.053 | 30.0 | 180 | 0.6587 | 0.7907 | | 0.053 | 31.0 | 186 | 0.6642 | 0.7907 | | 0.0459 | 32.0 | 192 | 0.6649 | 0.7907 | | 0.0459 | 33.0 | 198 | 0.6606 | 0.7907 | | 0.0416 | 34.0 | 204 | 0.6572 | 0.7907 | | 0.0382 | 35.0 | 210 | 0.6545 | 0.7907 | | 0.0382 | 36.0 | 216 | 0.6526 | 0.7907 | | 0.0358 | 37.0 | 222 | 0.6540 | 0.7907 | | 0.0358 | 38.0 | 228 | 0.6543 | 0.7907 | | 0.0336 | 39.0 | 234 | 0.6546 | 0.7907 | | 0.0331 | 40.0 | 240 | 0.6538 | 0.7907 | | 0.0331 | 41.0 | 246 | 0.6539 | 0.7907 | | 0.0325 | 42.0 | 252 | 0.6539 | 0.7907 | | 0.0325 | 43.0 | 258 | 0.6539 | 0.7907 | | 0.0333 | 44.0 | 264 | 0.6539 | 0.7907 | | 0.0317 | 45.0 | 270 | 0.6539 | 0.7907 | | 0.0317 | 46.0 | 276 | 0.6539 | 0.7907 | | 0.0319 | 47.0 | 282 | 0.6539 | 0.7907 | | 0.0319 | 48.0 | 288 | 0.6539 | 0.7907 | | 0.033 | 49.0 | 294 | 0.6539 | 0.7907 | | 0.0315 | 50.0 | 300 | 0.6539 | 0.7907 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu118 - Datasets 2.14.7 - Tokenizers 0.15.0