File size: 2,184 Bytes
67c6a1a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
---
license: apache-2.0
base_model: google/mt5-small
tags:
- summarization
- generated_from_trainer
metrics:
- rouge
model-index:
- name: mt5-small-finetuned-amazon-en-es
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mt5-small-finetuned-amazon-en-es
This model is a fine-tuned version of [google/mt5-small](https://huggingface.co./google/mt5-small) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 3.0280
- Rouge1: 17.3563
- Rouge2: 8.6193
- Rougel: 17.081
- Rougelsum: 17.1297
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5.6e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 8
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:|
| 7.0507 | 1.0 | 1209 | 3.3225 | 12.6324 | 4.7979 | 12.3957 | 12.4312 |
| 3.9068 | 2.0 | 2418 | 3.1852 | 16.432 | 8.2165 | 15.7321 | 15.789 |
| 3.5973 | 3.0 | 3627 | 3.0834 | 16.912 | 8.2736 | 16.3027 | 16.3174 |
| 3.4111 | 4.0 | 4836 | 3.0560 | 16.8768 | 8.0417 | 16.209 | 16.2473 |
| 3.318 | 5.0 | 6045 | 3.0464 | 17.5367 | 8.364 | 16.9286 | 16.9249 |
| 3.2435 | 6.0 | 7254 | 3.0371 | 17.3217 | 8.398 | 16.9066 | 17.0021 |
| 3.202 | 7.0 | 8463 | 3.0347 | 17.1712 | 8.0887 | 16.7378 | 16.748 |
| 3.1799 | 8.0 | 9672 | 3.0280 | 17.3563 | 8.6193 | 17.081 | 17.1297 |
### Framework versions
- Transformers 4.33.2
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.13.3
|