--- base_model: UBC-NLP/AraT5v2-base-1024 tags: - generated_from_trainer metrics: - rouge model-index: - name: results_arat5_wiki results: [] --- # results_arat5_wiki This model is a fine-tuned version of [UBC-NLP/AraT5v2-base-1024](https://huggingface.co./UBC-NLP/AraT5v2-base-1024) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.4401 - Rouge1: 0.0905 - Rouge2: 0.0 - Rougel: 0.0915 - Rougelsum: 0.0912 - Gen Len: 19.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 250 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:------:|:-----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | 7.7921 | 0.4757 | 500 | 6.2870 | 0.0905 | 0.0 | 0.0915 | 0.0912 | 19.0 | | 5.9839 | 0.9515 | 1000 | 5.5934 | 0.0905 | 0.0 | 0.0915 | 0.0912 | 19.0 | | 5.4311 | 1.4272 | 1500 | 5.0896 | 0.0905 | 0.0 | 0.0915 | 0.0912 | 19.0 | | 5.1245 | 1.9029 | 2000 | 4.7004 | 0.0905 | 0.0 | 0.0915 | 0.0912 | 19.0 | | 4.7258 | 2.3787 | 2500 | 4.3347 | 0.0905 | 0.0 | 0.0915 | 0.0912 | 19.0 | | 4.5072 | 2.8544 | 3000 | 4.0503 | 0.0905 | 0.0 | 0.0915 | 0.0912 | 19.0 | | 4.2388 | 3.3302 | 3500 | 3.8321 | 0.0905 | 0.0 | 0.0915 | 0.0912 | 19.0 | | 4.0817 | 3.8059 | 4000 | 3.6509 | 0.0905 | 0.0 | 0.0915 | 0.0912 | 19.0 | | 3.8843 | 4.2816 | 4500 | 3.4451 | 0.0905 | 0.0 | 0.0915 | 0.0912 | 19.0 | | 3.7958 | 4.7574 | 5000 | 3.3071 | 0.0905 | 0.0 | 0.0915 | 0.0912 | 19.0 | | 3.6397 | 5.2331 | 5500 | 3.1619 | 0.0905 | 0.0 | 0.0915 | 0.0912 | 19.0 | | 3.5658 | 5.7088 | 6000 | 3.0068 | 0.0905 | 0.0 | 0.0915 | 0.0912 | 19.0 | | 3.4171 | 6.1846 | 6500 | 2.9459 | 0.0905 | 0.0 | 0.0915 | 0.0912 | 19.0 | | 3.2697 | 6.6603 | 7000 | 2.8074 | 0.0842 | 0.0 | 0.0849 | 0.0844 | 19.0 | | 3.3168 | 7.1361 | 7500 | 2.7153 | 0.0905 | 0.0 | 0.0915 | 0.0912 | 19.0 | | 3.1594 | 7.6118 | 8000 | 2.6676 | 0.0905 | 0.0 | 0.0915 | 0.0912 | 19.0 | | 3.0928 | 8.0875 | 8500 | 2.5849 | 0.0905 | 0.0 | 0.0915 | 0.0912 | 19.0 | | 3.0318 | 8.5633 | 9000 | 2.5152 | 0.0905 | 0.0 | 0.0915 | 0.0912 | 19.0 | | 3.0392 | 9.0390 | 9500 | 2.4849 | 0.0902 | 0.0 | 0.0911 | 0.0908 | 19.0 | | 2.9917 | 9.5147 | 10000 | 2.4569 | 0.0768 | 0.0001 | 0.0774 | 0.0768 | 19.0 | | 2.9281 | 9.9905 | 10500 | 2.4401 | 0.0905 | 0.0 | 0.0915 | 0.0912 | 19.0 | ### Framework versions - Transformers 4.42.0.dev0 - Pytorch 2.2.1+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1