--- base_model: ylacombe/w2v-bert-2.0 tags: - generated_from_trainer datasets: - common_voice_16_0 metrics: - wer model-index: - name: w2v-bert-2.0-mongolian-colab-CV16.0 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_16_0 type: common_voice_16_0 config: mn split: test args: mn metrics: - name: Wer type: wer value: 0.3251033282575593 --- # w2v-bert-2.0-mongolian-colab-CV16.0 This model is a fine-tuned version of [ylacombe/w2v-bert-2.0](https://huggingface.co./ylacombe/w2v-bert-2.0) on the common_voice_16_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.5032 - Wer: 0.3251 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.7516 | 0.79 | 100 | 2.4041 | 1.0089 | | 1.0185 | 1.58 | 200 | 0.7642 | 0.6153 | | 0.5366 | 2.37 | 300 | 0.6518 | 0.5328 | | 0.4153 | 3.16 | 400 | 0.6116 | 0.4811 | | 0.353 | 3.95 | 500 | 0.6357 | 0.4806 | | 0.2876 | 4.74 | 600 | 0.6213 | 0.4434 | | 0.2389 | 5.53 | 700 | 0.5103 | 0.4243 | | 0.1735 | 6.32 | 800 | 0.5079 | 0.3753 | | 0.1419 | 7.11 | 900 | 0.5264 | 0.3638 | | 0.1031 | 7.91 | 1000 | 0.5454 | 0.3466 | | 0.0743 | 8.7 | 1100 | 0.5286 | 0.3337 | | 0.054 | 9.49 | 1200 | 0.5032 | 0.3251 | ### Framework versions - Transformers 4.37.0.dev0 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0